Спиралевидные нанотрубки из диоксида кремния

-->

В течение последнего десятилетия внимание учёных было приковано к спиралевидным и хиральным пористым материалам на основе различных оксидов.

Гетерогенный асимметрический катализ и разделение энантиомеров – одни из основных областей применения таких материалов. И хотя спиралевидные и хиральные пористые структуры были получены с помощью самосборки ионов переходных металлов и органических лигандов, этот способ синтеза не позволяет контролировать размер пор. Также были получены мезопористые спиралевидные и хиральные наностержни и нановолокна из диоксида кремния с помощью как анионных, так и катионных ПАВов и специальной аппаратуры, однако из-за сложности данных технологий не удаётся получить одинаковые объекты, что является важнейшим критерием для практического применения материалов.

L-PhePyBr.jpg Рис.1. Молекулярная структура L-PhePyBr, L-ValPyBr и L-IlePyBr

Самосборка хиральных низкомолекулярных соединений даёт возможность создавать самые разнообразные наноструктуры, а золь-гель процесс позволяет создавать на основе данных шаблонов органические и органо-неорганические гибридные материалы.

Spektr_0.jpgРис.2. Спектр циркулярного дихроизма и УФ-спектр гидрогеля L-PhePyBr (концентрация: 50 мг L-PhePyBr/1.0 мл of H2O)

Авторы работы в своих исследованиях использовали 3 вещества в качестве темплатов L-PhePyBr, L-ValPyBr и L-IlePyBr (рис.1–2). Каждое вещество растворялось в водном растворе аммиака, затем к смеси добавлялся TEOS (тетраэтоксисилан) по каплям при сильном перемешивании. Полученная вязкая жидкость выдерживалась при постоянной температуре в течение нескольких дней при определённых условиях для формирования наноструктур. Далее органическая составляющая удалялась путём промывки метанолом и хлороводородной кислотой, после чего образцы обжигались в печи.

Nanotrubki_0.jpgРис.3. FESEM-изображения ((a), (d)) и TEM-изображения ((b), ( c ), (e), (f)) нанотрубок со скрученными каналами пор в стенках после отжига (Условия синтеза для (a), (b) и ( c ): 10.0 мг of L-PhePyBr, 2.0 мл 5.0 мас.% водного раствора NH3 и 20 мг TEOS; условия синтеза для (d), (e) и (f): 10.0 мг L-PhePyBr, 2.0 мл 5.0 мас.% водного раствора NH3 и 20 мг TEOS)

Также были проведены исследования морфологии при изменении условий синтеза (изменение количества аммиака на начальном этапе синтеза (рис.3) и времени синтеза (рис.4)). На основании полученных экспериментальных данных учёные предложили модель (рис.5), согласно которой происходит формирование подобного рода наноструктур. На рисунке 6 представлены микрофотографии образцов, полученных из соединений L-ValPyBr и L-IlePyBr.

TEM_izobrazhenija.jpgРис.4. TEM-изображения образцов реакционной смеси при различных временах реакции (0 с, 100 с, 130 с, 1 час). Условия проведения реакции: 10.0 мг L- PhePyBr, 2.0 мл 5.0 мас.% водного раствора NH3 и 20 мг TEOS

Как уверяют учёные, необходимо провести дополнительные исследования, чтобы роль бензольных колец в формирование подобного рода наноструктур, что позволит при синтезе в достаточной мере контролировать скрученность, пористость и другие параметры данных материалов.

Mezoporistye_nanotrubki.jpgРис.5. Образование мезопористых нанотрубок со скрученными каналами пор в стенках

Nanotrubki_so_skruchennymi_kanalami.jpgРис.6. FESEM-изображения ((a) и ©) и TEM-изображения ((b) и (d)) нанотрубок со скрученными каналами пор в стенках, полученных из гелей L-ValPyBr ((a) и (b)) и L-IlePyBr (( c ) и (d))

Евгений Смирнов

Источник: Статья «The formation of helical mesoporous silica nanotubes» опубликована в журнале Nanotechnology

Опубликовано в NanoWeek,


Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 2.7 (3 votes)
Источник(и):

Нанометр: Спиралевидные нанотрубки из диоксида кремния