Внедрение персистентной памяти: добро пожаловать в революцию?

Блог компании Timeweb Cloud. Автор: Александр @Albert_Wesker. Следующим шагом эволюции компьютеров (который уже буквально на пороге) может стать постоянная энергонезависимая память большой ёмкости. Твёрдотельные накопители на несколько терабайт обеспечивают одновременно и длительное хранение данных, и функции оперативной памяти.

Это идеальный путь для развития компьютерных систем, так как он устраняет одно из фундаментальных противоречий современной компьютерной архитектуры. Но он вполне может хорошенько перемешать фигуры на доске существующей компьютерной индустрии, поскольку придётся изменить не только компьютеры, но и софт.

Независимость — это свобода

pamyat1.pngОбщий принцип организации перекрёстной матрицы памяти RRAM

Всем хорошо известны отличия энергозависимой памяти от энергонезависимой. Данные, хранящиеся в энергозависимой памяти живы только до тех пор, пока система работает. Как только подача энергии прекращается, данные становятся недоступными. Именно так работает оперативная память компьютера (ОЗУ) и кэш-память процессора.

Энергонезависимая память сохраняет информацию при отключении питания и хранит значительно бóльшие объёмы данных. Но работает она, на сегодняшний день неэкономично и гораздо медленнее, хотя именно в ней и содержится основная часть данных. Именно поэтому оперативная память остаётся первичной и применяется для хранения данных, необходимых ЦП для работы ОС и программ.

Сегодня существуют несколько видов быстрой энергозависимой памяти. Это динамическая, например, широко распространённая DRAM, разные версии которой используются в качестве ОЗУ, в ячейках она имеет транзистор и конденсатор, статическая (SRAM, применяется в качестве кэш-памяти ядра процессора), с шестью транзисторами в ячейке.

Но главная проблема состоит с том, что энергозависимая память, сколь быстра бы она ни была, отключаясь, теряет всю информацию. Это неудобно, но так работают сегодня большинство компьютерных систем. Пока.

pamyat2.pngМатрица RRAM под микроскопом

Поэтому и появились новые разработки быстрой, но уже энергонезависимой памяти. Это, например, резистивная память с произвольным доступом (RRAM, ReRAM, Resistive random-access memory). В её основе лежит свойство диэлектриков создавать внутри себя проводящие каналы при приложении высокого напряжения. Причём, изменив уровень напряжения проводящий канал можно разрушить, а затем создать снова. Получается так называемый мемристор, из которых и собираются матрицы памяти ReRAM.

Сдвиг по фазе? Нет, фазовый переход!

pamyat3.pngЭскизная схема двухслойной памяти 3D XPoint. На пересечении линий (серый) показаны запоминающие ячейки (зелёный) и селектор (жёлтый)

В качестве ещё одного примера энергонезависимой памяти, претендующей на место ОЗУ, часто приводят 3D XPoint от Intel (торговая марка Optane). Она использует уже другой эффект — phase-change memory (PCM), изменение фазового состояния материала ячейки (кристалла халькогенида) при нагреве электрическим током. Халькогениды — бинарные химические соединения халькогенов (к которым относятся кислород, сера, селен, теллур, полоний, ливерморий) с металлами. В случае 3D XPoint используется халькогенидное стекло на основе сплава антимонида и теллурида германия Ge-Sb-Te). Память состоит из селектора и, собственно, ячейки, которые находятся в точках пересечения перпендикулярно друг к другу проложенных проводников (wordline и bitline). Селектор (ключ) включается при подаче на него напряжения и меняет состояние ячейки либо позволяет считать информацию. Память имеет многослойную структуру (она построена на базе вертикально интегрированных ячеек PCMS), что позволяет масштабировать плотность её размещения на кристаллах.

Phase-change memory на сегодняшний день считается наиболее перспективной технологией, которая может прийти на замену энергозависимой оперативной памяти.

Подробнее
Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 4.8 (5 votes)
Источник(и):

Хабр