Восстановление утраченного: регенеративная биоэлектроника

Организм человека — это удивительный механизм, способный выполнять множество сложнейших функций одновременно. Многие аспекты строения, функционала или химического состава той или иной части нашего тела кажутся обыденными вещами, но лишь благодаря колоссальному исследовательскому труду, который длится уже много веков. Нам удалось не только установить пределы возможностей нашего организма, но и во многом преодолеть их.

Однако далеко не всегда удается обыграть природу. К примеру, регенеративные способности человека достаточно скудные, особенно если сравнивать с саламандрами. Одним из самых ярких примеров ограниченности регенеративных способностей является невозможностью полноценно восстанавливать нервные окончания, без которых та или иная часть тела не сможет функционировать, даже если другие ткани не повреждены.

Ученые из Кембриджского университета (Великобритания) в попытках решить эту проблему разработали метод восстановления ампутированного периферического нерва с использованием биогибридной регенеративной биоэлектроники.

Что лежит в основе данного метода, как он реализуется, и насколько он эффективен? Ответы на эти вопросы мы найдем в докладе ученых.

Основа исследования

Как отмечают авторы исследования, основным препятствием в устранении последствий повреждения периферической нервной системы является врожденная неспособность нейронов регенерировать и восстанавливать нарушенные нейронные цепи.

Следовательно, пока мы не научили свои нейроны регенерировать, нам необходимо найти им замену. В последнее время большое внимание научного сообщества привлекают имплантируемые нейротехнологии и клеточная терапия. Эти методы пытаются восстановить функцию, либо минуя место повреждения и электрически взаимодействуя с существующими нейронами, либо создавая новые клетки для замены поврежденных. К сожалению, оба метода имеют недостатки, которые тормозят процесс перехода от лабораторных исследований до клинических.

В контексте поврежденной ткани в зрелой нервной системе трансплантированные нейроны изо всех сил пытаются восстановить функциональные связи в существующих цепях без надлежащего руководства. Точно так же электроды не могут работать без взаимодействия со здоровыми рабочими клетками, потому что эти клетки повреждены травмой или скрыты образованием плотной рубцовой ткани вокруг имплантата (FBR от foreign body reaction / реакция на инородное тело). Более того, современным нейротехнологиям не хватает избирательности и специфичности для взаимодействия с разными подтипами нейронов, отвечающих за разные функции.

Критическим ограничивающим фактором является разрешение, с которым нервные импульсы отображаются на импланты. Это определяется различными факторами, такими как близость между электроактивными клетками и электродами, а также амплитуда их сигналов. Биогибридная стратегия, включающая клетки в качестве промежуточного слоя на электронике, позволяет осуществлять «управляемую» синаптическую интеграцию между имплантированными клетками и существующей нейронной схемой. Биогибридные импланты имеют потенциальную возможность принимать, взаимодействовать и контролировать поведение трансплантированных клеток; способствовать организованной, функциональной интеграции клеток с живой тканью; и снижать образование рубца (т.е. FBR).

Ученые предположили, что использование масштабируемого клеточного источника, который можно интегрировать в биоэлектронное устройство в качестве биологической мишени для импульсов периферических нервов, может обеспечить запись с выбранных подмножеств нервных волокон, уменьшить расстояние между аксоном и электродом и улучшить амплитуду сигнала.

Взяв за основу вышеупомянутые принципы, ученые создали биогибридный нейронный интерфейс, объединяющий скелетные миоциты человека, происходящие из индуцированных плюрипотентных стволовых клеток (iPSC от induced pluripotent stem cell), и гибкую электронику в модели хронического сенсомоторного нерва крысы.

Подробнее
Пожалуйста, оцените статью:
Пока нет голосов
Источник(и):

Хабр