Липкий паразит: оценка свойств висцина омелы белой

Блог компании ua-hosting.company. Если вы хоть раз пытались склеить что-то с помощью супер-клея, то наверняка заметили, что эта субстанция обладает удивительным свойством склеивать пальцы, вместо ремонтируемого предмета. Это, конечно комичное преувеличение, однако подобного нельзя сказать о висцине, вырабатываемом в ягодах омелы. Висцин успешно прилипает фактически ко всему, к чему прикасается, что делает его прекрасной основой для клея.

Ученые из Макгиллского университета (Монреаль, Канада) решили исследовать это вещество, дабы определить его потенциальную пригодность в медицине. В чем секрет висцина, каковы его физико-химические свойства, и какую пользу он может принести медикам? Ответы на эти вопросы мы найдем в докладе ученых.

Основа исследования

На первый взгляд может показаться, что жизнь человека мало поменялась бы, если бы не было адгезивов. Однако клейкие материалы используются и в быту (скотч), и в строительстве (герметик), и в медицине (хирургический клей). Не даром говорят, что рулоном клейкой ленты можно починить все что угодно.

Тем не менее синтетические адгезивы, сколь велико ни было бы их разнообразие, обладают рядом недостатков (обратимость адгезии, недостаточная адгезия при повышенной влажности и т. д.), а потому многие ученые проводят поиски альтернативных липких веществ. И что может быть лучше в качестве вдохновителя таких поисков, чем природа.

Эволюция и естественный отбор привели к появлению множества универсальных клеев со свойствами, не имеющими себе равных у современных синтетических клеев. Яркими примерами являются влажная адгезия у мидий и бархатных червей, а также обратимая сухая адгезия у гекконов и насекомых. Именно природа изначально и подтолкнула людей к созданию синтетических клейких веществ.

Исследования химических и физических свойств природных адгезивов привело к открытию висцина, выделяемого внутри ягод омелы белой.

omela1.pngОмела европейская (Viscum album L.)

Омела европейская (Viscum album L.) — вид гемипарастических (паразитарных) растений, получающих питание от дерева-носителя. Будучи паразитом, омела прикрепляется к дереву, высасывая из него все необходимые для ее существования питательные вещества. Вы наверняка видели (особенно осенью и зимой), как практически лишенное листьев дерево покрыто зелеными кустарниками омелы.

Опыление омелы происходит с помощью двукрылых насекомых, а распространение семян с помощью птиц, которые поедают белые ягоды (изображение №1). Семена покрыты липкой слизистой тканью (висцином), которая состоит из иерархически организованных микрофибрилл целлюлозы (CMF от cellulose microfibril), встроенных в гигро-чувствительный (реагирующий на влажность) матрикс.

Как правило, ягоды омелы быстро проходят через пищеварительный тракт птиц и выделяются в виде липких висциновых нитей, содержащих несколько семян, которые затем прикрепляются к ветвям деревьев, обеспечивая прорастание и слияние с растением-носителем.

Исследование состава висциновой ткани из V. album показало, что в ней содержится примерно равное количество целлюлозы и различных гемицеллюлоз (обогащенных арабинозой, маннозой и галактозой) с небольшой долей пектинов.

В отличие от большинства других биологических клеев, висцин омелы сочетает в себе сильную адгезию со способностью быстро перерабатываться путем простого механического вытягивания в жесткие, но гибкие волокна длиной до 2 м, которые армированы высоко ориентированными CMF.

Исследование также показало, что жесткость висцинового волокна легко настраивается в зависимости от относительной влажности (ОВ) в локальной среде: при относительной влажности около 0% была измерена жесткость волокна до 20 ГПа, а при относительной влажности близкой к 95% жесткость волокна снижается примерно до 300 МПа. Кроме того, при относительной влажности выше 50 % волокна проявляли способность течь при деформации, тогда как при низкой относительной влажности волокна демонстрировали значения предельной деформации менее 2 %. Это гигрореактивное поведение полностью обратимо. Тем не менее, несмотря на механическую изменчивость, зависящую от влажности, и биологическое происхождение волокон, было показано, что механические свойства при заданной относительной влажности воспроизводимы.

Недавние углубленные структурно-функциональные исследования процесса формирования волокон висцина дают представление о наномасштабном механизме, подчеркивая решающее значение набухающего гигро- и механо-чувствительного матрикса в будущих попытках воссоздания висцина омелы белой. Было показано, что нецеллюлозный матричный материал, окружающий CMF, реагирует на изменения относительной влажности, быстро поглощая водяной пар при ОВ 50%, позволяя CMF скользить относительно друг друга на различных масштабах длины и выравниваться под действием растягивающей нагрузки. После высыхания матрикс действует как прочный цемент, связывающий CMF вместе, что приводит к впечатляющей жесткости на растяжение.

Из вышеописанных свойств висцина следует, что это вещество может стать отличительной многофункциональной модельной системой для создания технических и биомедицинских клеев следующего поколения.

В рассматриваемом нами сегодня труде ученые показали, что висцин может быть переработан в более сложные архитектуры и структуры помимо простых волокон, а также исследовали адгезионные свойства висциновой ткани и ее потенциал в качестве биомедицинского герметика.

Подробнее
Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (1 vote)
Источник(и):

Хабр