«Главные кирпичики мироздания — не частицы, а квантовые поля». д.ф.-м.н. Алексей Семихатов

Каким образом математика соотносится с нашим физическим миром? Удивительно, как много раз нам удавалось находить математические средства для приемлемого описания мира — начиная с падающих тел и планет и заканчивая строением атома и глобальной структурой Вселенной. Но сегодня мы близки к исчерпанию запаса простоты: с разных сторон нас окружают сложные физические системы, с которыми нам трудно обращаться математически, считает известный ученый Алексей Семихатов.

О математическом взгляде на структуру нашей реальности, странностях квантового мира и не только физик и математик рассказал в интервью для портала «Научная Россия».

Алексей Михайлович Семихатов ― доктор физико-математических наук, главный научный сотрудник теоретического отдела Физического института им. П.Н. Лебедева РАН (ФИАН), популяризатор науки, лектор и телеведущий.

― В математике существует теория Софуса Ли, содержащая в себе некие группы симметрий, одна из которых реализуется в нашей природе. Получается, то, что мы видим на ускорителях частиц, было предсказано математической теорией и в природе на фундаментальном уровне реализован один из списков из учебника математики. Почему это так?

― Мы не знаем почему. Но зато нам известно, что начиная с Нового времени описание мира в науке ― это математическое описание. Ответа на вопрос, почему так случилось, у нас нет, но мы страшно радуемся этому факту, потому что он позволяет нам делать предсказания. Мы предсказываем наш мир на основе манипуляций с какими-то математическими объектами, уравнениями, и такое положение вещей существует еще со времен Исаака Ньютона. При этом огромную роль в устройстве мира играют симметрии. Они бывают в том числе сложными и не сводящимися ни к отражению в пространстве, ни к повороту в пространстве. Такие симметрии требуют привлечения математических структур. Огромное количество явлений мы постигаем благодаря понимаю тех или иных симметрий, управляющими этими явлениями. Прекрасный пример ― кварки, составляющие ядро атома. В их предсказании огромную роль сыграли математические соображения.

― Каким образом?

― А это очень интересная история. Сначала нам казалось, что элементарных частиц, составляющих материю, совсем немного: электрон, протон, нейтрон да нейтрино. Но затем мы начали строить ускорители, и выяснилось, что существуют не десятки и даже не одна сотня частиц, а многие сотни ― целый зоопарк! Когда физики стали объединять частицы в группы по некоторым похожим свойствам, было обнаружено, что есть группы из 8, 15, 21 частицы и т.д., ― в результате появился ряд чисел, выражающих размеры этих групп; открываемые на ускорителях частицы попадали в группы по некоторым симметрийным признакам. И выяснилось, что можно было открыть учебник совершенно чистой математики, просто изучающей свойства симметрии в конкретном воплощении, называемом алгебрами Ли, или группами Ли, ― и найти эти размеры там! Теория Софуса Ли, возникшая к началу XX в., сообщала нечто определенное в отношении чисел, полученных нами из эксперимента: они укладывались в некоторый ряд, которым управляет одна и та же базовая симметрия (базовые законы преобразования могут проявлять себя, действуя одним образом на группе из восьми объектов, другим ― на группе из 15 и т.д.).

polya1.pngУнитарная симметрия (от франц. unitaire, лат. unitas — единство) — приближенная симметрия сильных (ядерных) взаимодействий элементарных частиц, отражающая существование общих свойств у групп сильновзаимодействующих частиц. Послужила основанием для систематики элементарных частиц и привела в конечном итоге к возникновению квантовой хромодинамики и предсказанию кварков и глюонов. Источник справки: Савченко В.Н., Смагин В.П. Начала современного естествознания. Тезаурус. Ростов-на-Дону. 2006. Источник иллюстрации: фотобанк freepik.com

Таким образом, стало понятно, что по неизвестным нам причинам часть мира управляется математической симметрией, имеющей техническое название SU(3), или «теория унитарной симметрии». Самое фундаментальное проявление этой симметрии ― когда она управляет группой из трех объектов. Но ни одной такой «группы из трех» на ускорителях не наблюдалось! Пришлось сделать предположение, что мы по каким-то причинам просто не можем их увидеть.

― Речь идет о кварках?

― Да. Но в то время, о котором я говорю, в 1960-е гг., ученые даже не знали, существуют ли вообще кварки в природе или нет. Мы располагали только предположениями, за которыми, однако, стоял удивительный математический факт. Заключался он в том, что, исходя из того, как упомянутая симметрия SU(3) обращается с тремя фундаментальными объектами, можно было с помощью довольно сложных математических законов выяснить и то, как она действует на группах из 8, 15, 21 элемента и т.д. Таким образом, оказалось, что в каком-то смысле вся наша материя сложена из этих трех элементов: весь этот сонм частиц, которые классифицировались по симметриям SU(3), состоит из трех доселе не наблюдавшихся частиц! Их назвали кварками.

polya2.pngКаждое ядро атома содержит в себе шесть кварков: три находятся ― в протоне, три ― в нейтроне. Эти кварки, составляющие ядро атома, бывают двух типов: u-кварки (up-quarks, или верхние кварки) и d-кварки (down-quarks, или нижние кварки). Источник иллюстрации: Астрономия с Ауриэль.

― То есть благодаря учебнику математики нам удалось вписать искомый элемент ― кварки ― в физическую картину мира, а затем уже обнаружить их экспериментально? Сколько лет прошло с момента создания теории Ли до осознания того факта, что один из списков Ли содержит те самые недостающие кирпичики мироздания?

― В математике есть не только симметрия SU(3), о которой мы с вами говорим, но и бесконечное количество других симметрий. Мы не знаем, почему природа выбрала именно эту. От того момента, как группы Ли были сформулированы в математике, и до того момента, как они вдруг понадобились для описания кварков, прошло более полувека. Затем процесс ускорился. Ученые стали искать эти загадочные три частицы, эти кварки, ранее никем не наблюдаемые. Они нашлись внутри хорошо знакомых нам протонов и нейтронов: каждый протон и нейтрон составлен из трех кварков. Но неожиданно оказалось, что вынуть эти кварки из протонов и нейтронов невозможно. Эти объекты существуют в довольно своеобразном смысле: они живут внутри других образований (например, протона), которые нельзя разобрать на части. Нельзя вытащить оттуда один кварк, они как бы склеены между собой. Мы ведь привыкли, что разобрать можно все что угодно, достаточно просто приложить большую энергию, но здесь не так.

― И всегда ведь ставился этот вопрос: сколько еще мы будем разбирать материю на части и где предел?

Подробнее
Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (5 votes)
Источник(и):

Научная Россия