Квантовый нанотермометр: измерение температуры нематоды длиной 1 мм

Одним из основных показателей состояния биологической системы является температура. Если у человека развивается какая-то инфекция, то температура его тела повышается (как правило, но не всегда), что является признаком ответной реакции иммунной системы на угрозу. Другими словами, по температуре можно определить примерное состояние организма. Проблема в том, что человек большой (буквально), а вот, например, нематоды в длину всего лишь около 1 мм.

Измерить температуру столь малого организма было крайне сложно, однако ученые из университета Осаки (Япония) разработали методику, позволяющую решить эту проблему. Какие средства были использованы для реализации нанотермометра, что показали практические опыты, и где можно использовать данную разработку? Ответы на эти вопросы мы найдем в докладе ученых.

Основа исследования

Температура тела живого организма варьируется в зависимости от степени воздействия внутренних и внешних факторов. Мы привыкли, что температура окружающей среды напрямую влияет на температуру холоднокровных, посему ее значения меняются с завидной регулярностью. Однако даже у теплокровных при нормальных физиологических условиях наблюдаются температурные колебания, которые можно связать с гомеостатической терморегуляцией и энергетическим обменом.

Другими словами, тут отлично подходит шутка: «я не бездельничаю, я очень занятой человек на клеточном уровне». Если точно измерить температуру и ее динамику в субмикронном масштабе, то можно получить много информации касательно клеточной и молекулярной активности. Проблема в том, что с уменьшением объекта измерения увеличивается сложность его проведения (сложно засунуть в нематоду обычный термометр из аптеки).

Авторы исследования отмечают, что обычные электрические термометры не имеют субмикронного разрешения, а термография в ближнем инфракрасном диапазоне обычно помогает определять температуру поверхности биологических образцов, но не внутреннюю температуру.

Конечно, сейчас уже есть светоизлучающие нанотермометры (например, термочувствительные молекулярные зонды), которые способны преодолеть это ограничение. Но у такой методики также есть недостатки. Основной это долговременная устойчивость, а точнее ее отсутствие. Подобные устройства не могут точно измерять изменения температуры, которые протекают длительное время (скажем пару часов). Не говоря уже о токсичном воздействии на образец со стороны такого термометра.

В данном труде ученые описывают концепцию наноалмазного (ND от nanodiamond) квантового термометра, который обладает высокой точностью, устойчивостью и низкой токсичностью. Принцип его работы таков: датчик считывает температуру как сдвиг частоты оптически детектируемого магнитного резонанса (ODMR от optically detected magnetic resonance) дефектных центров азотных вакансий (NV от nitrogen-vacancy), который в основном возникает из-за теплового расширения решетки. Сенсорное ядро NV глубоко встроено в решетку алмаза и невосприимчиво к различным биологическим факторам окружающей среды. Внедрение этого квантового датчика в более сложные организмы позволяет считывать их тепловую активность на конкретном участке в режиме реального времени. Но процесс реализации такой техники сопряжен с рядом сложностей.

Подробнее
Пожалуйста, оцените статью:
Пока нет голосов
Источник(и):

Хабр