Золотая эпоха в микроэлектронике

Блог компании RUVDS.com. Автор: Анатолий Ализар. Минувший год окончательно доказал, что микроэлектроника — ключевая отрасль мировой промышленности. Сюда вливаются миллиарды инвестиций (капиталовложения $160 млрд в 2022 г.) и привлечено внимание крупнейших государств, которые понимают всю важность вопроса.

Такое внимание даёт повод называть нынешнее время «золотой эпохой в микроэлектронике». Никогда ещё отрасль не была в таком почёте у человечества. В выигрыше от этого и потребители, и бизнес, и учёные, которые могут насладиться щедрым финансированием исследований.

Вот некоторые из самых интересных научно-технических разработок второй половины 2023 года.

Самый быстрый полупроводник

Учёные из Колумбийского университета в США изготовили сверхбыстрый полупроводник. Время обработки данных в нём исчисляется в фемтосекундах, что в миллион раз быстрее нынешней гигагерцевой электроники.

Вообще, ограничения скорости кремниевых чипов связаны с колебаниями атомов, которые в твёрдых материалах перемещаются в виде квазичастиц, известных как фононы. К сожалению, эти фононы рассеивают и электроны, и экситоны (носители информации в микросхеме).

Так вот, новый полупроводник из рения, селена и хлора решает проблему рассеяния экситонов. Атомы Re6Se8Cl2 образуют кластеры (суператомы), каждый из которых ведёт себя как один большой атом, но обладает свойствами, отличными от свойств исходных элементов. В кластере шесть атомов рения находятся внутри куба из восьми атомов селена, а сверху и снизу — по атому хлора.

В общем, когда экситоны вступают в контакт с фононами Re6Se8Cl2, то вместо рассеяния они связываются вместе, образуя новые квазичастицы, так называемые акустические экситон-поляроны (см. видеозапись и анимации этого процесса).

Движение экситон-полярона в Re6Se8Cl2, съёмка с электронного микроскопа

Это первый в мире материал, в котором обнаружено устойчивое движение экситонов при комнатной температуре.

mikroelektronika1.pngХотя экситон-поляроны расходятся концентрическими кругами, их следует отличать от поверхностных акустических волн (SAW), показанных здесь на снимках с электронного микроскопа на длине волны 650 нм (1,91 эВ). Скорость поляронов (2,3 км/с) заметно выше, чем SAW (1,6 км/с)

Электроны в полупроводниках обычно рассеиваются через несколько нанометров, а время их существования измеряется фемтосекундами. В то же время акустические экситоны-поляроны в Re6Se8Cl2 успешно преодолели несколько микрометров (на три порядка дальше) за наносекунду (на шесть порядков дольше), причём их скорость вдвое выше, чем скорость электронов в кремнии. Поскольку поляроны способны существовать около 11 нс, акустические экситон-поляроны могут преодолеть более 25 микрометров, прежде чем рассеяться, считают учёные. По сути, это фотонное устройство, в котором скорость обработки данных измеряется в фемтосекундах.

Любопытно, что сверхбыстрый полупроводник был обнаружен случайно в ходе испытаний лабораторного микроскопа.

Подробнее
Пожалуйста, оцените статью:
Пока нет голосов
Источник(и):

Хабр