Физики научились управлять обменным взаимодействием с помощью лазера

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Немецкие физики продемонстрировали управление обменным взаимодействием между электронами в молекуле гексафторида серы. Для этого они облучали ее мощным инфракрасным лазером и следили за тем, как меняется ее спектр поглощения в рентгеновском диапазоне.

Исследование опубликовано в Physical Review Letters.

Электроны обладают полуцелым спином, что делает их фермионами и подчиняет принципу запрета Паули: два электрона не могут находиться в одном и том же состоянии. Когда два электрона встречаются в атоме (например, гелия) или молекуле (например, водорода), то, как они поделят пространство, зависит не только от их кулоновского отталкивания, но и от отношения их спинов. Когда спины направлены одинаково, электроны эффективно отталкиваются, в противном случае возникает притяжение. Это взаимодействие, названное обменным, возникает только в квантовой механике и ответственно за стабильность некоторых связей в молекулах.

Обменное взаимодействие сложным образом зависит от волновых функций частиц и вносит поправку в полную энергию электронного состояния атома и молекулы. По этой причине его довольно трудно вычленить из общей массы параметров, доступ к которым дает атомная и молекулярная спектроскопия. Применение мощных лазерных импульсов привело к развитию этих техник.

Физики научились исследовать спектры поглощения атомов и молекул с аттосекундным разрешением, что открыло дорогу к подробному изучению динамики электронов и ядер. Помимо прочего выяснилось, что обменное взаимодействие напрямую влияет на отношение площадей спектральных линий в дуплете спин-орбитального расщепления. Этот параметр (его еще называют коэффициентом ветвления) стал надежным источником информации об электронных корреляциях даже в сложных твердотельных системах.

Патрик Рупрехт (Patrick Rupprecht) из Института ядерной физики Общества Макса Планка и его коллеги из Германии пошли дальше и предложили модифицировать само обменное взаимодействие с помощью лазера.

Подробнее
Пожалуйста, оцените статью:
Пока нет голосов
Источник(и):

N+1