DeepMind научила нейросеть интуитивному пониманию физики

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Исследователи из компании DeepMind научили модель машинного обучения понимать базовые принципы взаимодействия предметов и «удивляться» в случае физически невозможного поведения, например, если предмет внезапно исчезнет или не появится там, куда он двигался. В отличие от аналогичных алгоритмов, новый выучил базовые физические принципы самостоятельно, посмотрев 28 тысяч часов видео взаимодействия различных предметов.

Статья опубликована в Nature Human Behaviour.

В машинном обучении за последнее десятилетие произошел огромный прогресс, и передовые алгоритмы для решения конкретных задач уже нередко справляются с ними лучше людей. Особенный интерес представляют большие языковые модели типа GPT и визуально-текстовые модели, такие как CLIP: они учатся не только выполнять конкретную задачу (предсказывать следующий токен в предложении или подбирать описание объектов), но и получают в процессе обучения представления о многих предметах и понятиях в мире, и это знание затем можно применять для широкого спектра задач.

Тем не менее, исследователи машинного обучения считают, что даже этого все равно недостаточно для создания универсального искусственного интеллекта. К примеру, Ян Лекун (Yann LeCun) отмечал в недавней статье, что большие языковые модели после обучения удерживают большой массив знаний, но они лишены здравого смысла, который формируется у людей из опыта взаимодействия с окружающим миром.

Идея познания мира через наблюдение за поведением объектов в нем уже не первый раз используется в научных работах. Например, в 2019 году американские исследователи предложили реализовать в алгоритме поведение младенцев, которые наблюдают за миром, интуитивным образом формируют понимание базовых физических принципов (например, если предмет отпустить — он упадет) и удивляются, когда их ожидания от поведения объектов не совпадают с реальностью. Разработчики создали алгоритм, который выделяет объекты, следит за ними и «удивляется», когда ожидаемая динамика объектов не совпадает с наблюдениями.

Исследователи из DeepMind под руководством Луиса Пилото (Luis Piloto) применили аналогичный подход, но создали модель, которая сама составляет представление о том, как должны вести себя предметы.

Подробнее
Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 4 (1 vote)
Источник(и):

N+1