Ученые ДВФУ разработали новый сенсор для обнаружения молекул опасных газов
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
Ученые Дальневосточного федерального университета (ДВФУ) в сотрудничестве с зарубежными коллегами разработали сенсорный элемент на основе модифицированных наночастиц диоксида титана, декорированных золотом. Сенсор можно применять для обнаружения опасных химических соединений в воздухе, что чрезвычайно важно для мониторинга состояния окружающей среды и работы систем безопасности на производстве.
Статья об этом опубликована в журнале Applied Surface Science.
Новый сенсор работает при обычной температуре, дополнительного нагрева анализируемых химических веществ не требуется. Это сложный наноматериал (нанопорошок), полученный в результате соединения материалов с противоположными свойствами: диэлектрика (диоксила титана) и металла (золота). Создать сенсор удалось благодаря простой и экологически чистой технологии лазерной абляции в жидкости.
Ученые облучили находящиеся в воде наночастицы диоксида титана лазером и добавили к ним химический раствор с ионами золота. В результате на поверхности более крупных частиц диоксида титана образовались частицы золота.
Исследования поддержаны грантом Президентской программы исследовательских проектов Российского научного фонда (РНФ).
«Лазерная абляция в жидкости — эффективная технология синтеза химически чистых функциональных наноматериалов, строение и состав которых могут быть очень разнообразны. Технология привлекает своей простотой, безопасностью для окружающей среды и невысокой стоимостью. Наноматериалы, получаемые в процессе жидкофазной лазерной абляции, можно использовать не только для создания сенсоров, чувствительных к опасным газам, но и для самого широкого круга задач: от реализации хемо- и биосенсорных платформ до создания солнечных элементов нового поколения. Очень важно, что жидкая среда, в которой происходит процесс синтеза наноматериалов, является естественным барьером, препятствующим попаданию наночастиц в окружающую среду», — рассказал кандидат физико-математических наук, руководитель проекта по гранту РНФ, научный сотрудник Научно-образовательного центра «Нанотехнологии» Инженерной школы (ИШ) ДВФУ Станислав Гурбатов.
Ученый объяснил, что для изготовления сенсорного элемента использовали коммерчески доступный нанопорошок диоксида титана, который диспергировали (мелко измельчили) в водной среде. Полученную дисперсию облучали миллисекундным лазером — с длительностью вспышки в одну тысячную долю секунды (такой режим лазера используется для сварки). Затем к ней добавляли раствор, содержащий ионы золота (тетрахлороаурат натрия), в результате чего на поверхности диоксида титана образовались частицы металлического золота.
Ученым удалось контролировать плотность декорирующих наночастиц золота на поверхности диоксида титана. За счет этого они настроили чувствительность сенсора к молекулам различных опасных соединений: аммиака, ацетальдегида и бензола, которые достаточно широко используются в химической промышленности.
«Новый сенсорный элемент меняет электрическую проводимость при контакте с молекулами газа. Это можно легко определить с помощью обычного электрометра при комнатной температуре. Полученные наноструктуры обладают высокой чувствительностью к газам-аналитам, что в совокупности с простой технологией изготовления и возможностью проводить измерения при комнатной температуре делает их привлекательными для коммерческого использования», — рассказал кандидат химических наук, старший научный сотрудник Научно-образовательного центра «Нанотехнологии» ИШ ДВФУ Сергей Кулинич.
Новый газовый сенсор стал первой разработкой в рамках нового направления в Инженерной школе ДВФУ «Синтез наноматериалов методом лазерной абляции в жидкостях», поддержанного грантом РНФ.
Пресс-служба ДВФУ
- Источник(и):
- Войдите на сайт для отправки комментариев