Квантовый метаматериал сможет измерить микроволновой фотон без разрушения

Связь между встроенным в волновод нелинейным метаматериалом и распределенной резонансной модой может обеспечить безусловное детектирование фотонов с ошибкой менее процента. Новую концепцию широкополосного однофотонного детектора в микроволновом диапазоне физики описали в препринте на arXiv.org.

Однофотонные детекторы — одна из ключевых технологий экспериментальной квантовой оптики. Детектирование фотонов в ультрафиолетовом, видимом и инфракрасном диапазоне частот — вполне устоявшаяся и рутинная технология: приборы производятся многими научными группами и коммерческими компаниями и вполне доступны для приобретения. Как правило, их принцип действия состоит в поглощении фотона чувствительной полупроводниковой матрицей или сверхпроводящей нанопроволокой. Возникающий при этом импульс тока регистрируется электронными приборами, что дает информацию о наличии фотона.

Однако, гораздо сложнее дело обстоит с фотонами СВЧ (или микроволнового) диапазона, с частотами примерно от 5 до 20 ГГц. Интерес к обнаружению таких фотонов возникает при изучении квантовых систем, работающих на СВЧ: сверхпроводящих цепей, квантовых точек и спиновых ансамблей. Как известно, энергия единичного фотона пропорциональна частоте электромагнитной волны. Для микроволн частота на 4–5 порядков меньше, чем для ИК и видимого диапазона. Поэтому регистрация отклика на СВЧ фотоны представляет крайне нетривиальную задачу.

Реализация квантового неразрушающего измерения (КНИ) фотона открывает большие перспективы для квантовой электроники и квантовых коммуникаций. В квантовой механике, термин КНИ обозначает сильное проекционное измерение, которое оставляет систему в измеренном состоянии. При этом поглощение фотона, которое происходит в традиционных детекторах, не является КНИ — если фотон прекратил свое существование, то бессмысленно говорить о состоянии света после измерения.

Однако, можно представить себе систему, которая может среагировать на пролетающий мимо фотон, при этом не уничтожая его, но лишь немного изменяя его параметры. В таком случае мы обладаем информацией о наличии фотона, и при этом он продолжает свое движение по волноводу и может переносить информацию или взаимодействовать с квантовой системой. Это крайне полезно для реализации квантовых коммуникаций и запутывания удаленных квантовых систем.

Но даже в видимом диапазоне физики долгое время не могли показать КНИ. Лишь несколько лет назад появились первые сообщения об успешном КНИ фотонов, отраженных от оптических резонаторов. Подробнее о КНИ фотонов видимого и ИК света можно прочитать здесь.

Также имеется некоторый прогресс на пути к КНИ фотонов микроволнового диапазона. Успешные эксперименты (1, 2) предлагают обнаруживать фотон через условную логическую операцию со сверхпроводящим кубитом. Однако такие прототипы опираются на временный захват фотона в резонатор, что крайне сужает полосу частот детектируемых фотонов и также ограничивает квантовую эффективность детектора. Это делает невозможным масштабное использование таких схем.

Таким образом, особую важность имеет разработка концепции широкополосного, эффективного и неразрушающего детектора одиночных фотонов микроволнового диапазона.

Арне Гримсмо (Arne Grimsmo) и его коллеги из Беркли, MIT и Университета Шербрук теоретически описали детектор на основе слабо нелинейного квантового метаматериала, способный обнаружить единичный микроволновый фотон.

Подробнее
Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 4 (2 votes)
Источник(и):

N+1