Белковый шаблон для наночастиц золота

Живой интерес к наночастицам золота продиктован в первую очередь их применением в SPR-диагностике. Существует весьма обширный набор методов для их получения от весьма простых (получение наночастиц золота из коллоидных растворов) до весьма красивых, и вместе с тем до сих пор загадочных методов, основанных на использовании в качестве шаблонов биологических макромолекул. Однако в подавляющем большинстве работ исследователи имели дело с макромолекулами в растворе, обходя стороной их использование в форме монокристаллов. Международный коллектив исследователей под чутким руководством И Лу (Yi Lu) попытались восполнить этот пробел.

В качестве шаблона ученые выбрали фермент лизоцим, благодаря относительной легкости получения его монокристалла, а в качестве прекурсора для золотых наночастиц ClAuSEt2. Исследователи наблюдали за ростом наночастиц золота внутри монокристалла в течение 90 дней (рис.1) при помощи ПЭМ (просвечивающая электронная микроскопия) и РСА (рентгено-структурный анализ). Уже на второй день монокристаллы лизоцима приобрели красноватый оттенок, свидетельствующий об образовании наночастиц золота (плазмонный резонанс).

image-621.jpg Рис. 1. а) Фотографии монокристаллов спустя разные промежутки времени. b,c) ПЭМ-микрофотографии монокристаллов при разном увеличении. d) Распределение наночастиц золота по размерам. e) Кристаллические структуры лизоцима, связанного с атомами золота спустя разные промежутки времени. f) График, отражающий изменение размеров наночастиц золота с течением времени. g) График, на котором обозначена заселенность различных позиций атомов золота.

Вначале Au(I) связывается с ε-N атомом His15 остатка лизоцима, затем отделяется от ε-N атома и диспропорционирует на Au и Au(III). Постепенно образующиеся атомы Au формируют кластер , а атомы Au(III) продолжают свое «путешествие» по монокристаллу, связываясь с различными участками лизоцима. Когда атомы Au(I) полностью диспропорционируют, в монокристалле лизоцима можно наблюдать большое количество нанокластеров (размером около 20 нм), а также атомы Au(III), занимающие 8 неэквивалентных позиций (рис.2).

image-622.jpg Рис. 2. На рисунке схематически изображены основные стадии роста наночастиц золота внутри монокристалла.

Варьируя скорость роста, можно получить наночастицы необходимого размера. В частности, на скорость роста могут влиять посторонние ионы и молекулы, в частности, ионы ртути (II) ускоряют рост наночастиц, а трис(2-карбоксиэтил)фосфин, наоборот, замедляет рост.

Авторы статьи не собираются останавливаться на достигнутом и намереваются распространить предложенный ими метод на монокристаллы других макромолекул, в частности, белок тауматин. Подобные исследования помогут ученым глубже проникнуть в механизм взаимодействия между биомолекулами и наноматериалами.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (2 votes)
Источник(и):

1. nanometer.ru