О новом ионисторе с электрохромным эффектом

Коллектив британских ученых предложил использовать наноструктурированный пентаоксид ванадия в качестве материала электрода ионистора. Помимо высоких электрохимических характеристик, авторам статьи удалось обнаружить ярковыраженный электрохромный эффект при зарядки/разрядке ионистора.

NNN уже неоднократно знакомил своих читателей с последними достижениями в области создания новых материалов электрода для ионисторов, однако воз и ныне там. Неизменным препятствием на пути данного класса устройств остается малая величина (1 Вт·ч/кг) запасаемой энергии, по сравнению с литиевыми батареями (100–1000 Вт·ч/кг), что весьма ограничивает круг практических применений.

Одним из возможных и потенциально успешных направлений является поиск подходящих наностурктурированных материалов среди оксидов d-металлов с высокой удельной площадью поверхности (для увеличения фарадеевской псевдоемкости).

article_41_1.jpg Рис. 1. СЭМ микрофотография наноструктурированного пентаоксида ванадия, обладающего биконтинуальной гироидной структурой (а), схематическое изображение процесса его восстановления с изменением окраски (b), а также фотография, иллюстрирующая различие в окраске между восстановленной и окисленной формами.

В своей статье коллектив британских исследователей из исследовательского центра фирмы «Нокиа» совместно с сотрудниками Кэмбриджского университета предложил в качестве нового материала для ионисторов наноструктурированный пентаоксид ванадия, обладающий биконтинуальной гироидной структурой (полученного электрохимическим осаждением на поверхность полимерного шаблона). Подобная структура обладает не только большой удельной площадью, но и легко доступна молекулам электролита благодаря развитой пористой структуре. Кроме того, предложенный авторами статьи материал обладает ярко выраженным электрохромным эффектом – изменением окраски при интеркаляции/деинтеркаляции ионов лития в структуре V2O5 (за счет восстановления V5+ до V4+ и наоборот), что имеет все шансы стать коммерческим ноу-хау, самым наглядным образом информируя пользователя о степени зарядки ионистора (при использовании неструктурированного оксида ванадия время изменения окраски исчисляется минутами, что не позволяет получать актуальную информацию о заряде ионистора).

article_41_2.jpg Рис. 2. Вольтамперные характеристики ионисторов с ипользованием структурированного (A) и неструктурированного электродов (B) с использованием литиевой соли в электролите (a) и без нее (b).

Собрав ионистор на основе полученного материала электрода (используя [SET3][TFSI] в качестве электролита), авторы сравнили электрохимические характеристики устройства с таковыми, полученными при использовании неструктурированного V2O5.

В случае структурированного материала, его удельная запасенная энергия оказалась существенно выше (52 Вт·ч/кг при удельной мощности свыше 1 кВт/кг против 1 Вт·ч/кг при 50 Вт/кг после первой зарядки).

article_41_3.jpg Рис. 3. Диаграмма Рагоне (A) и электрохимическая стабильность ионистора (B) для наноструктурированного электрода (обозначен кружками) и неструктурированного (обозначен квадратиками). Удельная сила тока свыше 10 А/г.

Результаты исследований опубликованы в статье:

Di Wei, Maik R. J. Scherer, Chris Bower, Piers Andrew, Tapani Ryhänen, and Ullrich Steiner A Nanostructured Electrochromic Supercapacitor. – Nano Lett. – DOI: 10.1021/nl2042112; Publication Date (Web): March 5, 2012.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 4.8 (6 votes)
Источник(и):

1. nanometer.ru