Исследование Пермского Политеха внесет вклад в развитие топливных элементов

В мире широко развивается водородная энергетика на основе применения твердооксидных топливных элементов (ТОТЭ). Эти устройства экологически превращают химическую энергию топлива в электрическую. Чтобы повысить их срок службы и надежность, постоянно создают новые технологии для разработки и совершенствования важнейших компонентов. К ним относятся электролиты и электроды, необходимые для функционирования топливных элементов.

Ученые Пермского Политеха предложили модифицировать твердые растворы электролитов несколькими добавками, тем самым повышая их качество. Исследуемый способ позволяет создавать подходящий материал для оптимизации работы ТОТЭ.

Обеспечить электричеством потребителей в различных условиях можно с помощью применения перспективных твердооксидных топливных элементов (ТОТЭ). Они могут использоваться в жилых домах, в небольших энергетических установках для обеспечения энергией и теплом, а также на мегаваттных электростанциях для крупномасштабного производства электроэнергии.

По сравнению с тепловыми электростанциями, которые работают на сжигании, преобразование энергии таким способом происходит электрохимическим путем, из-за чего отсутствует негативное влияние вредных выбросов на атмосферу.

«Топливный элемент состоит из электролита, который обладает ионной проводимостью, и электродов (анод и катод), в которых происходит электрохимическая реакция. В упрощенном варианте устройство можно рассматривать как батарею, которая служит для прямого превращения энергии химической реакции в электрическую энергию и тепло с непрерывной подачей топлива и окислителя (воздуха)», – объясняет профессор кафедры химических технологий, доктор технических наук ПНИПУ Владимир Пойлов.

Существуют различные виды топливных элементов. Процесс получения энергии в них идентичен. Они отличаются материалами, из которых состоят компоненты, и рабочей температурой. Сейчас актуален поиск подходящего состава для создания электролитов и электродов, эффективного при средних и низких рабочих температурах ТОТЭ (500–750 градусов). В таких условиях значительно уменьшается их коррозия и деградация, что повышает срок службы всего топливного элемента и позволяет снизить стоимость производимой электроэнергии. В настоящее время в качестве электролита чаще всего используют диоксид циркония, стабилизированный иттрием, но он устойчиво работает только при высоких температурах, около 1000 градусов.

Ученые Пермского Политеха применили классический глицин-нитратный метод для получения мультидопированного (с несколькими добавками) твердого электролита на основе диоксида церия. Такой материал, стабилизированный подходящими элементами, позволяет работать ТОТЭ при температурах 500–750 градусов. Политехники использовали редкоземельные элементы, такие как иттрий, гадолиний, самарий, неодим.

«Мы растворяли нитраты этих металлов в деионизованной воде и добавляли глицин, используемый в качестве органического «топлива». Он образует комплексы с металлами, что способствует предотвращению выпадения осадков и равномерному распределению добавки. После полного растворения глицина мы выпаривали полученный раствор до тех пор, пока смесь не воспламенялась. В процессе этой реакции выделяется большое количество газов, и образуются твердые мелкие частицы, которые в дальнейшем составят основу электролита», – поделился магистрант кафедры «Химические технологии» ПНИПУ Никита Фаустов.

Полученные образцы политехники изучали с помощью рентгенофазового анализа, сканирующей электронной микроскопии и лазерной дифрактометрии. Анализ показал, что в образцах отсутствуют примеси, морфология (структура) развита правильно, а состав соответствует теоретическому соотношению компонентов. Это значит, что применимый способ перспективен для получения электролитов на основе диоксида церия, стабилизированных несколькими добавками.

Исследование ученых ПНИПУ показало, что классическим глицин-нитратным способом можно получать мелкодисперсные чистые порошки сложных оксидов, которые в дальнейшем используются для изготовления среднетемпературных мультидопированных электролитов, что позволяет оптимизировать работу твердооксидных топливных элементов.

Работа выполнена в рамках программы стратегического академического лидерства «Приоритет 2030».

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (1 vote)
Источник(и):

Naked Science