Фотохимическая реакция с одним каталитическим циклом прошла энантиоселективно. Для этого понадобился анионный органокатализатор

Химики из Германии подобрали хиральный органический катализатор для реакции фотокаталитического циклоприсоединения. Оказалось, что найденный катализатор наводит хиральность в радикальном интермедиате, хотя обычно для наведения нужен отдельный каталитический цикл с нерадикальными интермедиатами.

Продукты циклоприсоединения удалось получить с высокой энантиоселективностью, пишут авторы статьи в Science.

Фотокаталитические реакции обычно протекают через образование ион-радикальных интермедиатов – заряженных молекул с неспаренными электронами на внешнем электронном уровне. Как правило, это происходит, когда возбужденный светом фотокатализатор переносит электрон на исходный реагент или, наоборот, забирает у реагента один электрон. Получившиеся радикал-анионы или радикал-катионы вступают в дальнейшие превращения с другими реагентами.

При этом контролировать энантиоселективность в реакциях с такими ион-радикальными интермедиатами ученые умеют плохо. И для получения одного из оптических изомеров продукта обычно приходится подбирать каталитическую систему так, чтобы наведение хиральности происходило в дополнительном каталитическом цикле с нейтральными интермедиатами. Это можно сделать, например, с помощью добавки дополнительного хирального катализатора, способного связывать один из реагентов.

reakciya1.pngКаталитический цикл, предложенный химиками. Наведение хиральности происходит за счет аниона, выделенного синей рамкой / B. List et al. / Science, 2023

Но недавно химики под руководством Беньямина Листа (Benjamin List) придумали такую каталитическую систему, в которой хиральность наводится при образовании катион-радикального интермедиата. Они выбрали реакцию для катализа – [2+2]-циклоприсоединение, в результате которого из двух алкенов образуется циклобутан – и попробовали добавить в реакционную смесь несколько разных хиральных органокатализаторов. Идея была в том, чтобы выбрать катализатор подходящей кислотности, способный не вступать в побочные превращения с катион-радикалом и при этом наводить хиральность, образуя с ним ионную пару.

В результате скрининга семи органокатализаторов с разными значениями константы кислотности химики обнаружили два подходящих катализатора. С обоими реакция шла неплохо, но только с одним – фосфоримидатным – продукт получился оптически чистым. Выход циклобутана составил 77 процентов, а соотношение энантиомеров – 93 к 7. В качестве фотокатализатора химики использовали соль замещенного пирилия.

reakciya2.pngОбщая схема реакции и несколько продуктов, которые получили химики. Над стрелкой в схеме изображен пирилиевый фотокатализатор. А справа от схемы изображен фосфоримидатный органокатализатор / B. List et al. / Science, 2023

Далее ученые попробовали использовать для своей реакции другие фотокатализаторы, у которых длина волны поглощаемого света отличается от длины волны для пирилиевой соли. Среди других протестированных катализаторов лучшим оказался поглощающий зеленый свет катионный серный гетероцикл. А поглощающий белый свет рутениевый комплекс сработал плохо – выход продукта составил 6 процентов. И хотя далеко не все катализаторы дали хороший выход, во всех случаях, когда реакция протекала, соотношение энантиомеров было одинаковым. Это означало, что наведение хиральности происходит только за счет хирального анионного органокатализатора, и энантиоселективность процесса не зависит от структуры фотокатализатора.

Так химики разработали метод получения хиральных циклобутанов с использованием асимметрического органокатализа. Причем наведение хиральности происходило внутри фотохимического каталитического цикла.

reakciya3.pngФотокатализаторы, которые протестировали химики / B. List et al. / Science, 2023

Пожалуйста, оцените статью:
Пока нет голосов
Источник(и):

N+1