Челябинские ученые создали алгоритм, распознающий опухоли мозга с вероятностью 99 процентов

Старший научный сотрудник лаборатории больших данных и машинного обучения Южно-Уральского государственного университета профессор Сэчин Кумар разработал модель нейросети для распознавания опухолей мозга по изображениям магнитно-резонансной томографии (МРТ).

«Обучение нейросети проходило на общедоступном наборе из 3064 изображений МРТ от 230 пациентов, – рассказывает Сэчин Кумар. – Распознавались три вида опухолей – глиомы, менингиомы и опухоли гипофиза. Наша модель сочетает в себе элементы сверточной и конволюционной нейронных сетей (U-net и CNN) для сегментации и классификации опухолей, что увеличило ее эффективность с точностью более чем 99 процентов». На наборе данных пациентов с уже подтвержденным диагнозом, в 99,39 процентов была диагностирована болезнь, и лишь 0,61 процентов системой был ошибочно поставлен диагноз «здоровы».

Для такого результата нейросеть прошла 150 циклов обучения. Алгоритмы были реализованы на языке программирования Python.

«При обучении нейросети каждое изображение изначально сегментировалось на девять частей, – объясняет суть технологии Сэчин Кумар. – Выстраивалось дерево опорных точек (VPT), просчитывались показатели ближайших соседей-пикселей, создавались метки, которые потом использовались для вычисления вероятностей».

Затем использовалась «сверточная» сеть. Сверточная нейронная сеть (U-net) – особая архитектура для задач семантической сегментации, таких, как например, сегментация опухолей мозга. Она состоит из двух главных частей – кодера и декодера. Кодер собирает и редуцирует пространственную информацию в изображении с помощью сверточных слоев и операций объединения, в то время как декодер преобразует ее для создания карты сегментации.

«Конволюционные нейронные сети (CNN), рекуррентные нейронные сети (RNN), сверточные нейронные сети (U-Net), сети с долговременной и кратковременной памятью (LSTM) – это все технологии глубокого обучения, – поясняет Сэчин Кумар. – В сущности, глубокое обучение полезно тогда, когда объем данных достаточно большой, и простые алгоритмы машинного обучения не справляются с ним за приемлемое время. Глубокое обучение обеспечивает высокую точность при работе именно с большими данными».

Профессор Кумар уверен в эффективности своей модели, однако предостерегает от поспешного ее внедрения. И дело прежде всего в географии.

Подробнее
Пожалуйста, оцените статью:
Пока нет голосов
Источник(и):

Naked Science