Тонко закручено. Как у графена нашли магический угол и что из этого вышло

Нобелевскую премию 2010 года Андрею Гейму и Константину Новоселову присудили за опыты с графеном. Работа, за которую ученые фактически получили премию, была опубликована за шесть лет до этого — она рассказывает о методе получения отдельного слоя углерода толщиной в один атом, в устойчивость которого при комнатной температуре не особо верили. Его уникальные свойства — электрические, механические, оптические и теплопроводящие — подтвердились.

Сегодня графен — уже далеко не только один углеродный слой толщиной в атом. Ученые выяснили, что чуть ли не самое интересное в графене начинается, если добавить к первому слою еще один, и немного его повернуть. Если сделать это правильно, то начнется странное: у углеродного материала возникнут свойства, которых не предвидели теоретики ни в середине прошлого века, ни в начале этого.

Вид с изнанки

Графен подробно описал канадский физик Филип Рассел Уоллес еще в 1947 году. Уоллесу не нужен был графен сам по себе — он не думал, что такой материал вообще возможен, а вычислял электро- и теплопроводность графита. Описание одного слоя было промежуточным шагом в решении его задачи.

grafen11.pngВзаимное расположение слоев в графите. Сплошной линией обозначен верхний слой, пунктирной — нижний. Атомы находятся в вершинах шестиугольников / Philip Russel Wallace / Physical Review, 1947

Физик рассчитал волновые функции валентных электронов углерода в изолированном слое графита и увидел, что его простая гексагональная решетка проявляет необычные электронные свойства, которые делают графит похожим на металл, даже несмотря на отсутствие электронов проводимости при нулевой температуре.

Чтобы разобраться, почему графен так делает, надо вывернуть пространство наизнанку и посмотреть на его Фурье-образ.

grafen1.pngMauro Gemmi et al. / ACS Central Science, 2019

По другую сторону химической структуры графена аккорды пространственной структуры атомов углерода раскладываются на отдельные ноты энергии их электронов. Здесь у электронов нет координат, которые меняются с течением времени, зато есть импульс, в ответ на изменение которого меняется энергия. Электронная изнанка графена имеет ту же размерность, что и обычная структура, но по осям в нем не пространственные координаты (x и y), а обратные им импульсные (1/х и 1/y). Вместо положения частиц — электронов — в пространстве, координаты обратного пространства описывают их волновой вектор. Так же, как и в прямом пространстве, обратная решетка кристалла создает для электрона периодический потенциал, но с периодом 2

Пожалуйста, оцените статью:
Пока нет голосов
Источник(и):

N+1