Теплозащита и Аэродинамика — пара нюансов, отделивших нас от Космоса

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Автор: Александр Старостин. Пилотируемый орбитальный полёт, без сомнения, является наиболее захватывающим воплощением технического прогресса. Вот он — настоящий шаг человечества в космос. Повинуясь воле пилота корабля, многотонная машина минует звуковой барьер, выходит на «гиперзвук» и преодолевает притяжение матери-Земли. Или же на колоссальной скорости входит в атмосферу, элегантным манёвром гасит скорость и садится на штатную ВПП. Ну разве что немного потрясёт.

Примерно так это выглядит в научно-фантастических фильмах, рассказывающих нам, как оно будет — и не имеет ничего общего с реальностью. В реальности же дерзнувшего с равной вероятностью испепелит и размотает до винтиков весьма интересными эффектами планетной атмосферы, если он не предпримет заранее особые меры. Я постараюсь вам рассказать, как на самом деле решались две важнейшие задачи суборбитальной космонавтики — теплозащиты и аэродинамики — на примере испытательных прототипов проекта «Буран» — беспилотных орбитальных ракетопланов БОР-4 и БОР-5.

БОР-4 и проектирование теплозащиты

bor1.pngБОР-4

Как я уже говорил в прошлых своих статьях про «Спираль», при конструировании многоразовых космических кораблей ключевым вопросом остаётся создание достаточно эффективной теплозащиты, которая сможет предотвратить перегрев конструкции корабля и при этом не ухудшит его аэродинамические характеристики.

Для небольших кораблей вроде советской «Спирали» вполне допустимо использование схемы «горячей конструкции». Я уже объяснял, что это, когда рассказывал об этом проекте, однако напомню кратко — горячая конструкция основана на принципе переизлучения тепла от горячих зон поверхности корабля на менее нагретые элементы. В случае «Спирали» для этого также используется пространственная ферма, которая, используя тепловое расширение, рассеивает нагрев, охлаждая всю конструкцию.

Однако для больших кораблей такая схема неприменима, так как она пожирает всё доступное ей свободное пространство, при этом усложняясь и требуя применения жаропрочных сплавов. Хуже того, площадь теплозащитного экрана (ещё одного важного элемента горячей конструкции, принимающего на себя основную тепловую нагрузку) растет пропорционально квадрату линейных размеров машины, а его масса — пропорционально их кубу!

Следовательно, для «Бурана» необходимо было применять обычную самолётную конструкцию из «холодных» материалов, не рассчитанных на высокие температурные нагрузки. К ним добавлялось теплозащитное покрытие, которое должно было одновременно обеспечивать приемлемый нагрев фюзеляжа и внутренних силовых конструкций корабля, одновременно будучи максимально ровным, чтобы воздух обтекал машину максимально спокойно, не образовывая завихрений. Такое обтекание ещё называют ламинарным. Ламинарное обтекание позволяет снизить температуру поверхности ещё на 150–200 градусов, что критически важно, поскольку эти градусы «выигрываются» в температурном диапазоне 1500–1700 градусов, в котором находятся пределы прочности основных конструкционных материалов. Применяются и другие ухищрения, основанные на переизлучении тепла и реакциях на атомарном уровне.

Если предельно упростить, то происходит следующее. Корабль, входя в атмосферу, сталкивается со встречным потоком воздуха, состоящим из молекул азота и кислорода. Перед лобовой поверхностью идущего на гиперзвуковой скорости корабля создаётся ударная волна, встречный поток в ней резко тормозится до дозвуковой скорости. При этом кинетическая энергия этого потока частично тратится на нагрев встречного потока (то есть происходит переход кинетической энергии в тепловую), а частично — на разрыв молекул азота и кислорода. При этом получившийся поток осколков молекул воздуха уже частично охлаждается (тепловая энергия переходит в так называемую энергию диссоциации). Потом этот поток наталкивается на «холодную» относительно ударной волны поверхность корабля, молекулы вновь соединяются, и выделившаяся при этом энергия нагревает эту самую поверхность. При этом скорость «сборки» молекул (научно этот процесс называется рекомбинацией) зависит от свойств поверхности, на которой она происходит. Это влияние называется каталитичностью. И если рекомбинацию замедлить достаточно, то она пройдёт не на наиболее нагретых лобовых кромках, а дальше. Грамотное использование каталитичности позволяет выиграть несколько сотен градусов в самых горячих зонах: на носовом коке (300–400 градусов), кромках крыла и нижних поверхностях крыла и фюзеляжа (ещё около 100 градусов).

Советские конструкторы пользовались данными о Space Shuttle, но также и собственными наработками. Учитывая, что в различных зонах поверхности огромного корабля ожидались различные температуры, предстояло разработать и различные типы теплозащитных покрытий, доселе в СССР не существовавших. Для наиболее горячих зон (носовой кок, передние кромки крыла, температура 1250–1650 градусов) был создан углерод-углеродный материал «Гравимол-В», состоящий из различных видов пластиков и углепластиков, дополненных пироуглеродами или особым песком и защитными покрытиями. Этот материал очень плотный, поэтому невозможно полностью покрыть им корабль, потому что тогда масса покрытия составила бы 40 тонн в случае «Бурана»! Поэтому в менее горячих зонах применялись различные типы керамических плиток из волокон двуокиси кремния и аморфного кварца, а также матов из более дешёвых и простых в изготовлении термостойких волокнистых материалов.

bor2.png

Конечно, наземные испытания в аэродинамических трубах позволяли провести определённые эксперименты, однако настоящая проверка была возможна только при орбитальном полёте. Помня об опыте аппаратов БОР, использовавшихся для испытаний Спирали, в НПО Молния приняли решение построить небольшой беспилотный аппарат, на котором можно было бы изучить и каталитичность, и работу плиток, и различные варианты их раскроя (то есть способа наклейки плиток на машину).

bor3.pngЧастично собранный БОР-4

Так появился БОР-4. Конечно, в его задачи входило не только испытание теплозащиты, однако именно это было главной целью всей программы. При проектировании учитывался опыт первых беспилотных орбитальных ракетопланов, однако распространённое в ряде источников мнение о том, что БОР-4 — это адаптированная под «Буран» копия «Спирали» неверно. На самом деле в НПО Молния и ЦАГИ рассчитывали в первую очередь на то, чтобы проверить, как себя будут распределяться тепловые потоки на носу и первых рядах теплозащитных плиток «Бурана» на гиперзвуковых скоростях.

Лозино-Лозинский поставил задачу полного соблюдения тепловых потоков на носовую поверхность «Бурана» и БОРа-4 в наиболее теплонапряженной траекторной точке, которая для орбитального корабля располагалась на высоте чуть ниже 70 км при скорости М= 23. Расчет Лозино-Лозинского был прост: если удастся проверить теплозащиту в «бурановской» натурной траекторной точке с максимальными тепловыми потоками, то для всех других участков траектории можно уже не беспокоиться. Сложность задачи была в том, что для получения таких же тепловых потоков в той же самой точке траектории модель меньшего размера не могла иметь просто масштабно уменьшенную форму орбитального корабля — в этом случае из-за свойств вязкости воздушного потока не удалось бы достичь полного аэродинамического подобия. / В.Лукашевич, И.Афанасьев, «Космические крылья»

Многодневные поиски решения задачи привели к простой и оттого гениальной находке. Заместитель начальника ЦАГИ Владимира Нейланд и заместитель главного конструктора НПО «Молния» по аэродинамике Евгений Самсонов решили взять за основу простой советский натурный нос «Бурана» и добавить к нему заднюю часть, способную к самобалансировке. Именно таким свойством обладали БОРы, построенные для «Спирали», а потому Самсонов, знавший о тех работах, смог довольно быстро уже имевшиеся расчёты адаптировать под нос «Бурана». Его имитировала сфера такого же радиуса. Именно поэтому БОР-4 внешне схож со Спиралью, хотя на самом деле не имеет к ней никакого отношения, как не имеет прямого отношения к БОР-1, –2 и –3.

bor4.pngКонструктивно-компоновочная схема БОРа-4: 1 — носовой теплозащитный обтекатель из жаропрочного углерод-углеродного композитного материала «Гравимол»; 2 — электрохимический источник тока (аккумулятор); З — топливный бак для газореактивных ЖРД с компонентами топлива азотный тетраоксид + несимметричный диметилгидразин (АТ+НДМГ); 4 — парашютная система спасения; 5 — блоки автономной бортовой системы управления (и навигации); 6 — блоки радиотелеметрической системы; 7 — научная аппаратура; 8 — силовой привод поворотных консолей крыла; 9 — поворотные (складывающиеся) консоли крыла; 10 —хвостовой стабилизатор (киль); 11 — два блока (по два ЖРД) двигателей газореактивной системы для управления по крену; 12 — центральных блок из четырех газореактивных ЖРД для управления по тангажу и рысканью; 13 — хвостовой силовой шпангоут, которым аппарат крепится к последней ступени ракеты-носителя; 14 — двигательная арматура.

Конструкционно БОР-4 похож на своих предшественников, однако для нас важно устройство его теплозащиты. Снаружи на корпус аппарата сперва наносилась абляционная (то есть уносимая) теплозащита. Её задача состояла в том, чтобы защитить машину на случай прогара теплозащиты экспериментальной, то есть пресловутых плиток и «Гравимола». Абляционная теплозащита устанавливается на одноразовые космические корабли, поскольку она, обычно, способна выдерживать большие температуры. Однако работает она за счёт того, что при нагреве происходит её расплавление и частичный унос потоком с корпуса. Благодаря этому корпус корабля меньше подвергается нагрузкам. Однако такая защита обычно может выполнить свою задачу лишь единожды и после этого не подлежит восстановлению.

Подробнее
Пожалуйста, оцените статью:
Пока нет голосов
Источник(и):

Хабр