Дорогие читатели, Нашему шестнадцатилетнему, волонтёрскому и некоммерческому проекту для создания новой, современной версии N-N-N.ru, очень нужно посоветоваться касательно платформы нашего сайта – SYMFONY & DRUPAL 8. Платформа не простая, но обещаем – мы не займём много времени, просто нужна консультационная поддержка квалифицированного разраба. Если вы можете помочь, то связаться с нами можно на страницах Facebook.com здесь и здесь.

С помощью компьютерного зрения научились обнаруживать места для связывания лекарств в фармакологических мишенях

Ученые из группы iMolecule Центра Сколтеха по научным и инженерным вычислительным технологиям для задач с большими массивами данных (CDISE) разработали алгоритм машинного обучения для поиска у белков сайтов связывания с лекарствами – потенциальных лекарственных мишеней. Алгоритм BiteNet за полторы минуты может проанализировать тысячу белковых структур и найти оптимальные места для присоединения лекарственных молекул.

Результаты исследования опубликованы в журнале Communications Biology.

Мишенями лекарственных препаратов обычно служат белки – молекулы, контролирующие большинство биологических процессов. Для оказания терапевтического эффекта лекарства связываются с белками в определенных местах – сайтах связывания. Способность соединяться с лекарством определяется аминокислотной последовательностью участка и его пространственной структурой. Сайты связывания – настоящие «горячие точки» фармакологии. Чем больше известных сайтов связывания, тем больше возможностей для создания новых более эффективных и безопасных лекарств.

Аспирант Сколтеха Игорь Козловский и старший преподаватель Сколтеха (CDISE) Петр Попов разработали новый вычислительный подход для пространственно-временного обнаружения сайтов связывания у белков. Метод основан на применении к белковым структурам, которые позиционируются как 3D-изображения, алгоритмов глубокого обучения и компьютерного зрения.

Новая технология позволяет детектировать даже сайты, которые сложно обнаружить: например, ученым удалось обнаружить сайты связывания, которые скрыты в экспериментальных атомарных структурах или формируются несколькими белковыми молекулами, для рецептора, соединяющегося с G белком и эпителиального фактора роста, – одними из важнейших лекарственных мишеней, в случае онкологических заболеваний.

mishen1.pngСхематическое изображение рабочего процесса BiteNet / ©www.nature.com

По словам руководителя исследования Петра Попова, геном человека насчитывает порядка 20 000 различных белков, однако лишь малая часть из них ассоциируется с фармакологической мишенью.

«Наш подход позволяет исследовать белок на наличие сайтов связывания для лекарственно-подобных соединений, таким образом позволяя расширить набор фармакологических мишеней. Кроме того, успех начального этапа поиска лекарственных препаратов на основе структуры (structure-based drug discovery) сильно зависит от выбранной атомарной структуры белковой мишени. Работа со структурой, в которой сайт связывания закрыт для лекарства или отсутствует, может привести к неудаче. Наш метод позволяет анализировать большое количество структур одного белка и находить наиболее подходящую для данного этапа», – рассказывает Попов.

По словам первого автора исследования, аспиранта Сколтеха Игоря Козловского, BiteNet превосходит существующие аналоги по скорости и точности: «BiteNet основан на компьютерном зрении. Мы представляем белковые структуры в качестве изображений, а сайты связывания в роли объектов, которые мы ищем на этих изображениях. Одну пространственную структуру мы можем проанализировать за 0,1 секунд, а за 1,5 минуты оценить 1000 изображений – тысячу белковых структур, по 2000 атомов в каждой».

Пожалуйста, оцените статью:
Пока нет голосов
Источник(и):

Naked Science