Полуметалл теллурид вольфрама — швейцарский нож дня нанотехнологий
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
В современном мире сложно удивить кого-то сотовым телефоном, с которого можно исключительно звонить и отправлять смс. Сейчас все хотят всего и в одном флаконе: звонки с любой точки мира, крутую камеру для съемки 4k видео, непробиваемый корпус и батарею, которой хватит на пол жизни.
Такой принцип применим не только к предметам ежедневного использования, но и к химическим элементам. Многие ученые занимаются поиском самых универсальных элементов, сплавов, соединений и т.д., которые объединяют в себе самые полярные свойства. Сегодня мы познакомимся с исследованием, в котором ученые доказали, что теллурид вольфрама (WTe2) обладает естественной металличностью и сегнетоэлектричеством, оставаясь при этом полуметаллом. Что означают все эти закрученные термины, почему это так удивительно, и где это можно применить на практике? Об этом мы узнаем из доклада исследовательской группы.
Основа исследования
Сегнетоэлектрические материалы имеют спонтанный электрический дипольный момент (поляризацию) даже в отсутствие внешнего электрического поля. Этот спонтанный электрический дипольный момент может многократно переходить между двумя или более энергетически эквивалентными состояниями или направлениями при приложении внешнего электрического поля, которое разрушает вырождение и формирует фундаментальную основу многочисленных технологических применений сегнетоэлектрических материалов. Для пьезоэлектричества нецентросимметричная кристаллическая структура является единственным требованием.
А вот для полярного материала помимо нецентросимметричности кристаллической структуры должна существовать уникальная полярная ось. Чтобы материал считался сегнетоэлектриком, он должен быть полярным и демонстрировать бистабильность поляризации вдоль полярной оси.
Свойства сегнетоэлектричества чаще всего приписывают изоляторам и полупроводникам, а не металлам. Связано это с тем, что электроны проводимости* в металлах экранируют статические внутренние поля, возникающие из дальнего дипольного порядка*.
Электроны проводимости* — электроны, которые способны переносить заряд в кристалле.
Дальний порядок* — упорядоченность атомов или молекул, которая повторяется на неограниченно больших расстояниях, что и отличает дальний порядок от ближнего.
И тут ученые переносят нас в относительно недалекое прошлое. В 1965 году был опубликован труд Филипа Андерсона и Эдварда Блаунта «Symmetry Considerations on Martensitic Transformations: «Ferroelectric» Metals?», в котором они описывают новый класс материалов. Этот материал, обладающий характеристиками металла с полярной осью и асимметричной кристаллической структурой с инверсией, был назван сегнетоэлектрическим металлом. Однако экспериментально подтвердить данные теоретические выкладки в условиях комнатных температур доселе было проблематично, если не сказать невозможно.
С 60-ых утекло немало воды, и мир науки стал богаче. Современные исследования смогли продемонстрировать достаточно успешные экспериментальные реализации металлических систем, чьи структуры подвергались переходу от центросимметричности к нецентросимметричности. К таким материалам относятся LiOsO3 при 140 K и Cd2Re2O7 при 200 K.
В рассматриваемом нами сегодня труде ученые сосредоточили свое внимание на объемном кристаллическом WTe2, который объединил в себе природную металличность и сегнетоэлектричество при комнатных температурах. А такое слияние характеристик, как заявляют сами исследователи, может быть крайне полезным в разработке нанотехнологий.
Результаты исследования
А теперь приступим к самому интересному. Что такое WTe2? Как мы уже знаем, это теллурид вольфрама. Данное вещество относится к дихалькогенидам переходных металлов, которые обладают самыми разными кристаллическими структурами: гексагональной (2H), моноклинной (1Т) и ромбической (Td).
Изображение №1
В случае WTe2 имеет место ромбическая кристаллическая структура (1A), в которой атомы вольфрама (W) октаэдрически координированы атомами теллура (Te), а последовательные слои между ними вращаются на 180°. Из-за сильной интерметаллической связи атомы вольфрама образуют зигзагообразные цепочки с небольшим изгибом, что приводит к искажению октаэдров теллура (вокруг каждого атома вольфрама).
Октаэдр* — многогранник с восемью гранями.
На изображении 1B показан рентгенодифракционный анализ монокристаллов WTe2 с ориентацией по оси c. Дифракционные пики (00l) подтверждают наличие монокристаллической фазы Td в WTe2, то есть ромбической кристаллической структуры. Отсутствие инверсионной симметрии в фазе Td позволило идентифицировать WTe2 как полуметалл Вейля II типа.
Главным отличием WTe2 от других дихалькогенидов переходных металлов является факт того, что WTe2 является полуметаллом в своем основном состоянии, а не полупроводником.
Измерение переноса электрического заряда (1С) подтвердили полуметаллическое основное состояние WTe2. Также отмечается уменьшение сопротивления при снижении температуры от комнатной до 10 К, что характерно металлическим системам. А измерения магнитосопротивления при 30 мК с магнитным полем до 10 Тл показали выраженные колебания Шубникова – де Гааза с четырьмя основными частотами (1D и 1Е), которые служат подтверждением четырех поверхностей Ферми, состоящих из двух наборов электронных и дырочных карманов. Наличие дырок и свободных электронов может быть источником очень большого ненасыщенного магнитосопротивления в WTe2.
Итак, есть металлическая проводимость до 30 мК, а нецентросимметрия хоть и необходима, но недостаточна для сегнетоэлектричества. Учитывая это, ученые задают вопрос — является ли полуметаллический WTe2 с нецентросимметричной пространственной группой сегнетоэлектриком?
Ответ на этот важный вопрос исследователи искали с помощью пьезоэлектрической силовой микроскопии (PFM), которая отлично подходит для исследования микроструктуры доменов и динамики поляризации в классических сегнетоэлектрических материалах. Данный тип микроскопии использует обратный пьезоэлектрический эффект и обнаруживает деформацию решетки из-за приложенного электрического поля.
В качестве исследуемых образцов выступили небольшие монокристаллические кусочки WTe2 толщиной в несколько десятком микрометров (2А и 2В).
Изображение №2
Измерения всех показателей проводились при комнатной температуре в инертной сухой среде. На изображениях 2С-2H показаны снимки пьезоэлектрической силовой микроскопии образцов, которые подтверждают наличие антипараллельных сегнетоэлектрических доменов, средний размер которых варьируется от 20 до 50 нм. Поверхность образцов считается атомно плоской со среднеквадратичной шероховатостью ~ 0,2 нм (2C). Помимо овальных доменов (2G и 2Н) также были обнаружены и полосообразные (отмечены стрелками на 2D).
Эти наблюдения доменов в полуметаллических монокристаллах WTe2 обозначают, что WTe2 не только имеет полярную ось (ось c), но также имеет бистабильные поляризационные состояния, проявляющиеся как статические антипараллельные домены. А это, в свою очередь, полностью доказывает наличие сегнетоэлектричества в полуметаллическом WTe2 при комнатной температуре.
Важным показателем WTe2 является его стабильность. Поверхность WTe2 довольно чувствительна и может подвергаться окислению на воздухе. Поверхностный оксид образуется в результате выделения вторичных связей W – O (WOx) и Te – O (TeO2) на поверхности WTe2. Окисление WTe2 является самоограничивающимся процессом и приводит к образованию аморфного поверхностного оксидного слоя толщиной около 2 нм.
Объемные кристаллы и относительно толстые образцы WTe2 более стабильны на воздухе по сравнению с мультислойными образцами, особенно с однослойными и двухслойными WTe2. Кроме того, в аморфных материалах нет полярной пространственной группы, и сегнетоэлектричество не может возникнуть, поскольку оно существует только в кристаллических материалах.
Еще более важным атрибутом сегнетоэлектриков является переориентация поляризации с помощью внешнего электрического поля. Проблема в том, что в отличие от изолирующих сегнетоэлектриков, провести переключение поляризации в WTe2 гораздо сложнее из-за его высокой проводимости: приложенное смещение индуцирует электрический ток, а не воздействует на полярные искажения.
Эту проблему можно решить путем внедрения слоя диэлектрика между контактами, что позволит применить электрическое поле к WTe2 и реализовать сегнетоэлектрическое переключение.
Изображение №3
Для достижения подобной конфигурации и исключить возможность прямого внедрения заряда из наконечника в WTe2, были подготовлены образцы тонких пленок с геометрией конденсатора (3А). В такой структуре ток блокируется диэлектрическим слоем на интерфейсе сегнетоэлектрик/металл, поскольку поверхность образца WTe2 кратковременно подвергается воздействию воздуха, прежде чем осаждение металла образует очень тонкий оксидный слой.
На изображении 3В показана металлизированная пластинка WTe2 на поверхности кремниевой подложки, покрытой Ti/Au. При этом толщина пластинки WTe2 составляет 15 нм, а толщина верхнего металлического электрода Ti/Au составляет 9.5 нм. Таким образом, течение тока сильно ослаблено в такой конфигурации, несмотря на то, что пластинка WTe2 является металлической.
Теперь же необходимо было продемонстрировать, что переключение сегнетоэлектрической поляризации WTe2 реально. Для этого были проведены спектроскопические PFM измерения через верхний электрод в геометрии конденсатора, который успешно использовался ранее для измерений PFM субэлектрода. Полученный пьезоэлектрический отклик как функция приложенного смещения (3C и 3D) показывает переключаемое гистерезисное поведение, которое также встречалось и в традиционных сегнетоэлектриках BaTiO3 и Pb(ZrxTi1-x)O3.
На изображениях 3E-3G хорошо видна противоположно ориентированная остаточная поляризация, управляемая смещением. Ученые отмечают, что подобные переключения между антипараллельными эквивалентными состояниями поляризации WTe2 возможно выполнять многократно.
Для более детального ознакомления с нюансами исследования (в частности с теоретическими выкладками) рекомендую заглянуть в доклад ученых .
Эпилог
В данном труде ученые смогли реализовать концепцию сегнетоэлектрических металлов, описанную еще в далеком 1965 году. Расчеты и теории были подтверждены практическим исследованием образца, роль которого исполнил полуметалл Вейля WTe2.
Объемный кристаллический WTe2 проявляет бистабильные поляризационные состояния, которые переключаются под действием внешнего электрического поля. Таким образом, сегнетоэлектричество является объемным свойством WTe2 и не ограничивается только однослойными образцами.
Ученые намерены в дальнейшем продолжить изучение сегнетоэлектричества в других металлических слоистых материалах, так как они могут стать важным элементом будущих нанотехнологий, в частности для электроники со сверхнизким энергопотреблением.
- Источник(и):
- Войдите на сайт для отправки комментариев