Искусственный интеллект научили угадывать свойства веществ

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Исследователи обучили систему искусственного интеллекта определять параметры взаимодействия молекул со светом на основе их строения. Это значительно ускорит поиск подходящих для новых применений веществ. Статья ученых опубликована в журнале Advanced Science.

Спектроскопия — это стандартный метод определения свойств молекул, применяемый как в науке, так и в промышленности. В рамках этого подхода вещество подвергают воздействию излучения и измеряют отраженный или поглощенный им свет. Задачей спектроскопии является определение состава или характеристик вещества на основе полученных данных о его спектре. Однако точные измерения могут быть очень длительными и дорогостоящими.

В новой работе ученые представили решение этой проблемы. Авторы обучили три системы искусственного интеллекта выдавать спектр веществ на основе их строения. Исследователи использовали разные технологии: многоуровневый персептрон, сверточную нейросеть и глубинную тензорную нейросеть. Точность первого подхода составила около 0,3 электронвольт, второго — 0,23, третьего — 0,19. Также обе нейросети смогли воспроизвести небольшие детали спектра, поэтому авторы считают их результаты хорошими.

«Обычно для нахождения наиболее подходящей к спектру излучения молекулы приходится комбинировать полученные знания с некоторым уровнем химической интуиции, — говорит соавтор работы Милица Тодорович из Университета Аалто (Финляндия). — Проверка их индивидуальных спектров проводится методов проб и ошибок, что может растянуться на недели или месяцы, в зависимости от количества потенциально подходящих молекул. Наш ИИ выдает все эти свойства мгновенно».

Обучение проходило в течение нескольких недель. Обучающей выборкой был набор данных о строении и спектрах 132 тысяч органических молекул. Основным преимуществом подхода является его быстрота — он выдает ответ почти мгновенно. Теперь авторы намерены расширить обучающую выборку для возможности предсказаний спектров более широкого класса соединений.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (1 vote)
Источник(и):

Индикатор