Колебания зрачков при саккадах связали с механическими свойствами глаза

Walt Stoneburner / flickr . com

Аргентинские ученые разработали простейшую физическую модель, которая связывает постсаккадные колебания зрачка с механическими параметрами глаза — например, с собственной частотой колебаний радужной оболочки. Новая модель хорошо согласуется с экспериментальными данными и позволяет усовершенствовать системы отслеживания направления взгляда. Статья опубликована в Physical Review Letters, кратко о ней сообщает Physics, препринт работы выложен на сайте

Когда мы читаем или ищем какой-нибудь объект в поле зрения, глаза не движутся плавно, а «скачут» от точки к точке, совершая быстрые (от 10 до 80 миллисекунд), строго согласованные движения, которые называются саккадами. Более того, глаза совершают саккады даже в том случае, если человек попытается сфокусироваться строго на одной точке — таким образом компенсируется несовершенство глаза, из-за которого сетчатка может отчетливо воспринимать цвета и детали только в узкой области.

Интересно, что в конце саккады зрачок, представляющий собой отверстие в радужной оболочке, и радужная оболочка сама по себе, не прекращают движение сразу, но еще какое-то время колеблются относительно нового положения равновесия. Это так называемые постсаккадные колебания (postsaccadic oscillations, PSOs). Подобные колебания можно легко разглядеть на видео с ускоренной съемкой. Естественно предположить, что постсаккадные колебания связаны с механическими свойствами глаза, например, с вязкостью стекловидного тела или упругостью радужной оболочки. К сожалению, формальная физическая модель явления до сих пор не была разработана, хотя более общие модели, описывающие саккады, существуют. Тем не менее, такая модель помогла бы усовершенствовать системы отслеживания направления взгляда, поскольку движение зрачка внутри радужной оболочки очевидным образом сказывается на их работе — в частности, она позволила бы разделить вклады в движение, связанные с сигналами мозга и с механическими свойствами глаза.

В этой статье группа ученых под руководством Себастьяна Бузата (Sebastián Bouzat) разработала простейшую качественную модель, описывающую постсаккадные колебания. Для этого они предположили, что движение глаза происходит строго вдоль заданной оси и рассмотрели по отдельности движение роговицы и зрачка. Исследователи считали, что роговицу приводит в движение внешняя сила (проще говоря, мышцы, охватывающие глаз), которая плавно увеличивает координату ее центра вдоль заданного направления. Если быть более точным, в начале движения сила нарастает линейно, в конце экспоненциально спадает, а в целом ее зависимость задается тремя параметрами, отвечающими за абсолютную величину, характерное время действия и плавность изменения силы. Кроме того, ученые рассматривали зрачок как массивную частицу, на движении которой сказывается вязкое трение и упругие силы, стремящиеся «подтянуть» зрачок к тому же месту, что и центр роговицы. Проще говоря, зрачок в некотором смысле аналогичен обычному механическому маятнику с затуханием. Наконец, ускорение роговицы физики включили в модель в качестве внешней силы, управляющей движением зрачка.

(a, b) Семейство саккад разной длины: пунктирной линией отмечена координата роговицы, сплошной линией — координата зрачка. © Зависимость максимальной скорости зрачка в течение саккады от ее длина: линиями отмечены теоретические зависимости для различных параметров модели, точками — экспериментальные данные. S. Bouzat et al. / Phys. Rev. Lett.

Затем ученые рассчитали с помощью разработанной модели зависимость координаты роговицы и зрачка от времени для различных параметров внешней силы. Оказалось, что в рассмотренной системе действительно возникают эффекты, напоминающие постсаккадные колебания — при правильно подобранных значениях параметров экспериментальные данные практически идеально ложились на теоретическую зависимость.

Сравнение теоретических зависимостей (линии) и экспериментальных данных (точки). S. Bouzat et al. / Phys. Rev. Lett.

Более того, предложенная модель позволила ухватить и более тонкие эффекты. Например, известно, что амплитуда постсаккадных колебаний растет при увеличении длины саккады вплоть до восьми градусов, однако при дальнейшем увеличении амплитуда начинает снижаться. Разработанная учеными модель не только воспроизвела этот эффект, но и позволила установить его природу — по словам ученых, вид зависимости амплитуды колебаний от длины саккады указывает на резонансный характер колебаний. Проще говоря, амплитуда колебаний максимальна при длине саккады порядка восьми градусов из-за того, что в этом случае характерное время колебаний радужной оболочки совпадает с характерным временем движения глаза. Возможно, это предсказание теории подтвердят дальнейшие эксперименты.

Зависимость максимальной амплитуды (a) и периода (b) постсаккадных колебаний от длины саккады.S. Bouzat et al. / Phys. Rev. Lett.

Стоит заметить, что для более полного описания постсаккадных колебаний следует рассматривать трехмерную модель, учитывающую поперечные колебания радужной оболочки, однако даже простейшая модель, рассмотренная учеными в данной работе, позволяет качественно ухватить общую зависимость.

Ученые часто применяют физические модели для корректного описания движения биологических систем. Например, в прошлом месяце исследователи из США и Швеции смоделировали поведение головного мозга при столкновениях и показали, что наибольший вклад в повреждения вносят низкочастотные моды возбуждений, причем общую динамику можно ухватить, рассматривая всего несколько релевантных частот. В частности, эта работа помогла лучше разобраться в процессах, сопровождающих сотрясение мозга. Кстати, черепно-мозговые травмы часто сказываются на скорости сужения и расширения зрачков во время яркой вспышки света, что позволяет быстро и сравнительно надежно диагностировать травмы в полевых условиях.

Автор: Дмитрий Трунин

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (2 votes)
Источник(и):

nplus1.ru