Технология изготовления микроскопической гибкой электроники для безболезненного имплантирования в головной мозг

В последнее время все чаще и чаще звучат слова о создании всевозможных миниатюрных электронных устройств, которые можно имплантировать в ткани живых организмов. Но если со стороны самой электроники не возникает почти никаких проблем, то нежные ткани, окружающие твердые электронные устройства, могут раздражаться и воспаляться, что может привести к появлению неприятных и болевых ощущений. Для того, чтобы решить эту проблему, Джон А. Роджерс (John A. Rogers), профессор материаловедения из университета Иллинойса, и Майкл Бручес (Michael Bruchas), анестезиолог из Вашингтонского университета в Сент-Луисе, создали электронное устройство столь крошечное, что оно может быть введено в чрезвычайно нежные ткани, такие как нервные ткани мозга, не нанеся этим тканям никакого вреда.

Джон А. Роджерс рассказал в интервью Discovery News, что их задача была усложнена тем, что нервные ткани мозга не только очень нежные и хрупкие, ткани головного мозга имеют тенденцию постоянно перемещаться благодаря тому, что мозг все время плавает в жидкости внутри черепной коробки. Это постоянное перемещение создает массу проблем, когда кто-либо будет пытаться поместить внутрь нервных тканей жесткие электронные устройства или волоконно-оптические световоды.

Для создания крошечного электронного устройства ученые сначала создали тончайшую «печатную плату», основу будущего устройства. Эта плата изготовлена из пластичного полимерного материала, армированного волокнами натурального шелка.

Натуральный шелк является нейтральным для большинства живых организмов материалом, он обладает высокими адгезионными свойствами, что используется для укрепления контакта тканей с электронным устройством. Получившееся электронное устройство, в составе которого находятся крошечные светодиодные источники света, имеет толщину всего 25 микронов, что дает ему достаточную гибкость.

Для сравнения, толщина человеческого волоса составляет порядка 100 микрон, а толщина самого тонкого волоконно-оптического световода – 125 микрон.

Созданное устройство было успешно имплантировано в мозг животного-грызуна, который был генетически спроектирован так, что клетки головного мозга могли воспринимать световые сигналы от вспышек светодиодов. С помощью света Роджерс и его коллеги могли стимулировать определенные клетки головного мозга, что проявлялось в виде реакции животного, служившей подтверждением работоспособности устройства.

Одним из преимуществ подобного подхода является то, что для работы таких устройств, имплантированных в головной мозг, больше не требуется подключения этого устройства к внешнему микропроцессору с помощью торчащего из черепа жгута проводов, который ограничивает, сковывает движения и изменяет поведение лабораторных животных. А использование светодиодов вместо электродов позволяет избежать травм нервных тканей, которые возникают при введении и удалении электродов из мозга.

Этот новый вид микроскопической электроники позволит ученым, изучающим работу головного мозга, проводить более чистые эксперименты и получать более достоверные результаты.

В настоящее время имплантированное электронное устройство еще имеет провод, соединяющий его с внешним источником питания, в данном случае, с маленькой батарейкой, закрепленной на голове животного. Но в будущем не составит труда организовать снабжение энергией имплантированных устройств с помощью современных беспроводных технологий. А такие микроскопические устройства можно будет имплантировать не только в мозг, но и в любые другие органы, такие, как сердце, почки и легкие.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 3.2 (18 votes)
Источник(и):

1. Discovery News

2. dailytechinfo.org