Полые наночастицы оксида железа как будущее электродов литий-ионных батарей

Специалисты из Аргоннской национальной лаборатории и Чикагского университета (США) синтезировали полые наночастицы оксида железа с высокой концентрацией точечных дефектов для реализации совершенно новой концепции производства электродов на основе наночастиц, зажатых между двумя слоями чистых углеродных нанотрубок.

Когда новый электрод становится катодом, высокая концентрация вакансий железа в наночастицах позволяет значительно улучшить рабочие характеристики существующих литий-ионных батарей, уверяют разработчики.

ds2.jpg Рис. 1. Слева — микрофотография полых наночастиц оксида железа; справа — схематическое изображение инновационного катода на основе полых наночастиц между слоями углеродных нанотрубок (иллюстрация Argonne National Laboratory).

Традиционные электроды на основе наночастиц довольно быстро теряют работоспособность из-за плохого контакта между наночастицами и токоприёмником. Новые же электроды позволяют проводить обратимую интеркаляцию ионов лития, результатом которой являются высокая ёмкость и эффективность, превосходная скорость заряда и замечательная стабильность (рабочие характеристики постоянны в течение 500 с лишним циклов перезарядки).

Достигнутый результат — наглядное доказательство того, что морфология наноматериала катода является наиболее критическим фактором для дальнейшего развития литий-ионных батарей.

Полые наночастицы гамма-Fe2O3 были синтезированы в Аргоннской национальной лаборатории с количеством железных вакансий, вчетверо превосходящим таковые у обычных наночастиц.

Инновационный метод производства электрода заключается в запирании слоя наночастиц между двумя слоями чистых мультистенных углеродных нанотрубок без использования «связки» или иных добавок.

Электрохимические тесты продемонстрировали высокую ёмкость (132 мА•ч/г при 2,5 В), высочайшую фарадеевскую эффективность, составляющую 99,7% (демонстрирует эффективность транспорта электронов в электрохимической цепи), отличные скоростные характеристики (133 мА•ч/г при 3 000 мА/г) и солидную стабильность (как уже сказано, более 500 циклов).

Кроме того, в работе присутствуют интересные данные о внутренней структурной трансформации наночастиц, полученные методом синхротронной рентгеновской абсорбции и дифракции, которые дают чёткое представление о том, что происходит с литием в течение электрохимического цикла.

Отчёт о работе можно найти в журнале Nano Letters.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (8 votes)
Источник(и):

1. Аргоннская национальная лаборатория

2. compulenta.ru