

БАЗАЛЬТОПЛАСТИКИ: СОЗДАНИЕ СОВРЕМЕННОГО ПРОИЗВОДСТВА КОМПОЗИЦИОННОГО НАНОСТРУКТУРИРОВАННОГО ПОЛИМЕРА, АРМИРОВАННОГО БАЗАЛЬТОВЫМИ ВОЛОКНАМИ

Совместный проект с ГК «Роснано»

Наименование проекта	Базальтопластики: создание современного производства композиционного наноструктурированного полимера, армированного базальтовыми волокнами
Начало проекта	2009 год
Продукция на 5 год реализации	 Ü Композитная арматура, модифицированная наночастицами Ü Композитная насосная штанга для добычи нефти Ü Шахтная композитная анкерная крепь, модифицированная наночастицами Ü Энергоопоры для ЛЭП Ü Дорожные опоры освещения
Участники проекта	ü ГК «Роснанотех» ü ООО «Гален» ü Соинвестор

Композитная арматура Rockbar. Сравнение с аналогами.

Технические характеристкии		Композитная арматура Rockbar	Арматура из углеродистой стали AV	Стеклопластиковая арматура	Арматура из нержавеющей стали			
1. Прочность на растяжение	МПа	1000 -3000	550	1000	550			
2. Теплопроводность		менее 0,46	56	менее 1,0	17			
3. Плотность	г/см ³	1,60 - 2,10	7,85	2,10	7,85			
4. Модуль упругости	ГП а	50-350	200	45	200			
Показатели безопасности:								
1. Электрическая проводимость		не или проводит электричество	проводит электричество	не проводит электричество	проводит электричество			
2. Магнитная характеристика		не намагничивается	намагничивается	не намагничивается	не намагничивается			
3. Огнестойкость	οС	до 300 (600*)	до 600	до 150(300*)	до 600			
4. Показатели надежности		коррозионная и химическая устойчивость очень высокая	коррозионная и химическая устойчивость низкая	коррозионная и химическая устойчивость высокая	коррозионная и химическая устойчивость высокая			

^{*} при однократном воздействии с последующим разрушением

Свойства продукции «Гален»

Абсолютная коррозионная стойкость

Высокая прочность

Низкая плотность

Щелочестойкость

Низкая теплопроводность

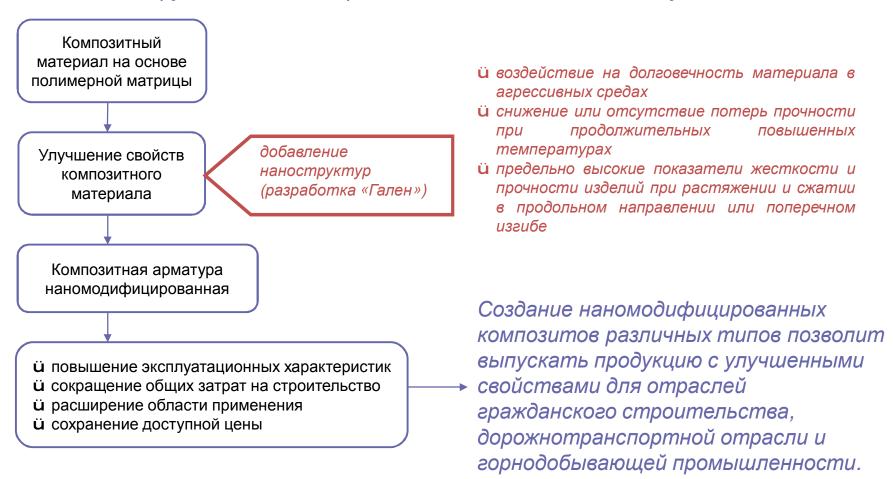
Немагнитный материал

Долговечность

Морозостойкость

Пожаробезопасность

Экологическая безопасность



Диэлектрик

Применение нанотехнологий

Эффект применения нанотехнологий заключается в улучшении свойств конструкционного материала: базальто-, стекло- или углепластика

Композитная арматура Rockbar в гражданском строительстве

Композитная арматура Rockbar. Арматурные стержни

Рисунок 1. Композитные базальтопластиковые стержни с адгезионным покрытием

Стержни из базальто-, стекло- или углепластика, изготовленные методом пултрузии

- **ü** Ø от 2,5 до 32 мм
- ü длина до 12 м (или скручены в бухты)
- **ü** различное финишное покрытие

Отличительные характеристики:

- **ü** абсолютная коррозионная стойкость более длительная безопасная эксплуатация объектов
- **ü** наилучше соотношение веса и усилия на разрыв более легкие прочные конструкции
- **Ü** Щелочестойкость долговечность в среде бетонов
- **Ü** НИЗКАЯ ПЛОТНОСТЬ сокращение транспортных расходов

Сетка из композитной арматуры Rockbar

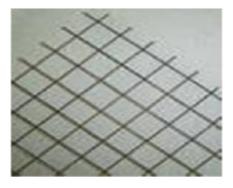


Рисунок 2. Сетка из композитных базальтопластиковых стержней

Изготовлена из базальто-, стекло- и углепластиковых, стержней с различным финишным покрытием

- **ü** двухосно ориентирована одинаковые механические свойства в продольном и поперечном направлениях
- **ü** низкий модуль упругости быстро и без последствий гасится вибрация
- **ü** сводообразование при нарушении бетонной конструкции сохраняет свою форму, предотвращает трещинообразование

Области потенциального применения композитных базальтопластиковых стержней и сетки:

- **ü** Жилищно-гражданское и промышленное строительство, фундаменты ниже нулевой отметки залегания
- **ü** Горнодобывающая промышленность
- Ü Дорожное строительство, укрепление дорожного полотна
- **ü** Мостостроение, настилы и ограждения мостов
- **ü** Армированные бетонные емкости и хранилища очистных сооружений, элементы инфраструктуры химических производств
- ü Объекты ЖКХ, опоры контактной сети
- **ü** Морские и припортовые сооружения, укрепление береговой линии

Энергоэффективность. Преимущества композитной сетки

В настоящий момент в крупнопанельном домостроении применяются:

Панели стеновые трехслойные

Наружный слой, бетон – 80 мм

Внутренний слой, бетон – 120-140 мм

Средний слой (утеплитель) — 120 мм

Для защиты сетки из черного металла ширина внешнего слоя 80 мм!

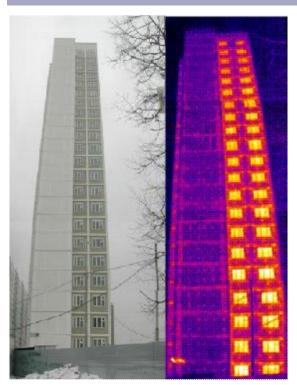
Внутренний слой бет он Средний слой (утеплитель) Композитная сетка

Рисунок 3. Трехслойная панель. Схематическое изображение в разрезе.

Применение композитной сетки позволит:

ü сократить теплопотери на 30-40%

ü уменьшить внешний слой до 40-50 мм,


т.е. в 2 раза расход бетона

ü уменьшить вес панели

ü снизить нагрузку на фундамент, строить более высокие здания

Сравнение с металлом по теплопроводности

На фотографии видны шпонки, узлы крепления панелей друг к другу.

Точки темно-оранжевого цвета - так называемые «мостики холода» - места расположения стальной арматуры в бетонной панели, через которые происходят теплопотери.

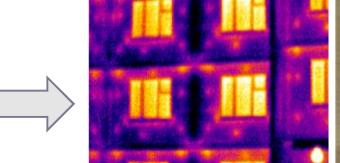


Рисунок 5. Образец дискретной стальной арматуры.

Съемка проведена «Технологический институт энергетических обследований, диагностики и неразрушающего контроля «ВЕМО». Руководитель: Будадин Олег Николаевич

Адрес: г. Москва, ул. Люсиновская, д.62 Тел.: (495) 237-72-88, 236-83-15

Пример расчета теплопотерь

Таблица 1. Расчет теплопотерь на примере гибких связей, изготовленных из композиционных материалов

Технические параметры	Гибкие связи «Гален»	Стальные гибкие связи	
Общие теплопотери на 1 м² стены с трехслойной ограждаю конструкцией*, кВт/ч	28,30	42,55	
Снижение теплопотерь при применении базальтовь гибких связей, в %	34 %		
Общие теплопотери через стены 9-ти этажного 6-ти	кВт/ч	537 700,00	808 450,00
подъездного жилого дома общей площадью стен 19 тыс.м ²	руб. **	318 610,00	524 800,00
Экономия энергии, при замене стальных гибких связей на	кВт/ч	270 750,00	
базальто-пластиковые гибкие связи.	руб.	206 190,00	

^{*}трехслойная ограждающая конструкция: теплоизоляция – пенополистирол марки M25 толщиной 150 мм, наружный слой – тяжелый бетон толщиной 70 мм, внутренний несущий слой- тяжелый бетон толщиной 130 мм при использовании 5 гибких связей на 1 м² стены диаметром 6 мм;

^{**}тарифы на предоставление тепловой энергии для физических лиц по г. Москва на 2009 г.

Стальная арматура. Коррозия

Одна из главных причин разрушения железобетонных конструкций

- **ü** ежегодные потери \$57 млрд.* (Федеральное дорожное агентство США)
- **ü** в России проблема недооценена, т.к. не проводились исследования, позволяющие оценить масштабы ежегодных потерь

Механизм коррозии

- **ü** разрушение бетонного защитного слоя (влажный воздух, агрессивная среда)
- **ü** дефекты арматуры, разрушение бетона от ржавчины на арматуре

<u>Решение : использование в строительстве</u> <u>неметаллической арматуры</u>

- ü абсолютная коррозионная стойкость
- ü прогноз долговечности на срок > 75 лет
- **ü** увеличенный межремонтный период, снижение затрат на текущее содержание и ремонт

Рисунок 6. Обрушение фасада дома вследствие коррозии стальных гибких связей

Композитная арматура Rockbar. Специальное применение

Применение в армированных бетонных емкостях для:

ü хранилищ очистных сооружений

ü инфраструктуры химических производств

Отличительные характеристики композитной арматуры Rockbar - абсолютная коррозионная стойкость, щелочестойкость - позволяют применять ее в строительстве объектов, подверженных постоянному агрессивному воздействию.

Объекты очистных сооружений и химических производств подвержены химическим воздействиям и механическим нагрузкам. Бетон, используемый в строительстве, должен быть специально подготовлен и защищен, обладать следующими характеристиками:

ü герметичность, газо- и водонепроницаемость

ü предотвращение образования трещин и надрезов

ü устойчивость к воздействию очень агрессивных сред

ü устойчивость к механическим разрушениям, в т.ч. и к истиранию

Композитные материалы в дорожнотранспортном строительстве

Реализованный проект: автомагистраль Шали – Бавлы

автодорога «Европа-Западный Китай», 14-ый км автомагистрали Шали (М-7) — Бавлы (М-5), Республика Татарстан

закладка опытного бетонированного участка с применением наноструктурированных композиционных материалов «Гален»

Уникально для мирового строительного рынка! Новейшее поколение арматуры для бетона, долговечности в несколько раз превосходит металлические аналоги

Рисунок 7. Укладка композитной сетки на опытном участке дороги Шали-Бавлы

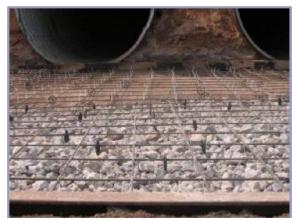


Рисунок 8. Сетка из композитных стержней «Гален», закладка на опытном участке

- **ü** трасса 1-й технической категории строительство соответствует международными стандартами при участии
- **ü** Министерства транспорта и дорожного хозяйства Республики Татарстан
- ü Департамента стимулирования спроса ГК «Роснано»
- **ü** Министерства промышленности и энергетики Чувашской Республики

Реализованный проект: Thompson Bridge

Новый однопролетный мост на двух полосной дороге класса A в Co. Fermanagh, Северная Ирландия

надстройка из бетонных плит, армированных арматурой «RockBar»

«RockBar» отобран благодаря долговечности и отличному сопротивлению коррозии

Рисунок 9. Новый мост в Co. Fermanagh, Северная Ирландия

Великобритания

- > £500 млн. на ремонт и реконструкцию
- > часть разрушений коррозия стальной арматуры, запоженной в бетоне.*
- + антиобледенительные соли усиливают коррозию

Рисунок 10. Стержни «RockBar» в настиле нового моста в Со. Fermanagh, Северная Ирландия

^{*}Proceedings of Bridge Management, Fifth International Conference on Bridge Management, University of Surrey, April 2005.

Расчет экономической эффективности применения композитной арматуры в конструкции моста*

Два варианта конструкции моста в г. Виннипег, Канада.

Требования, предъявляемые к конструкции, соответствуют реальным эксплуатационным характеристикам моста.

Таблица 2. Детализация анализа расчета экономической эффективности

Бетонные конструкции, армированные металлической армат	урой	Бетонные конструкции, армированные композитной арматурой		
Жизненный цикл (лет):	50	Жизненный цикл (лет):	75	
Начальные вложения		Начальные вложения		
Проектирование (\$):	25,000	Проектирование (\$):	35,000	
Транспортные расходы (\$):	150,000	Транспортные расходы(\$):	150,000	
Покрытие (м2):	6,000	Покрытие (м2):	6,000	
Прочие расходы (\$/м2)	350	Прочие расходы (\$/м2)	414	
Текущая стоимость начальных расходов на 1 конструкцию:	\$ 2,275,000	Текущая стоимость начальных расходов на 1 конструкцию:	\$ 2,669,000	
Пересчет на 1 год:	\$ <u>144,336</u>	Пересчет на 1 год:	\$ <u>162,192</u>	
Содержание и ремонт Транспортные расходы (\$):	75,000	Содержание и ремонт Транспортные расходы (\$):	75,000	
Ямочный ремонт (\$):	5,000,000	Транспортные расходы (\$):	2,500,000	
Замена покрытия (\$):	150,000	Замена покрытия (\$):	150,000	
Количество лет:	25	Количество лет:	25	
Пересчет на 1 год:	\$ <u>96,602</u>	Пересчет на 1 год:	\$ <u>12,970</u>	
Ликвидационная стоимость (\$):	3,000,000	Ликвидационная стоимость (\$):	3,000,000	
Пересчет на 1 год:		Пересчет на 1 год:	\$ <u>2,306</u>	
Полная стоимость (Пересчет на 1 год):		Полная стоимость (Пересчет на 1 год):	\$ 177,468	

Эффективность эксплуатации моста, армированного композитной арматурой – 30 %

^{*}Источник: «An Introduction to Life Cycle Engineering & Costing for Innovative Infrastructure», A Canadian Network of Centres of Excellence, www.isiscanada.com, 2006

Для добывающих отраслей промышленности

Насосная штанга для добычи нефти (1 из 3)

Рисунок 11. Насосная штанга для добычи нефти стеклопластиковая

Металлический или стеклопластиковый стержень круглого сечения, на концах которого высажены головки, заканчивающиеся резьбой.

- **ü** предназначен для передачи поступательного или вращательного движения от наземного привода к скважинному насосу при добыче нефти
- **ü** около 57% общего фонда добывающих скважин в России и странах СНГ эксплуатируются штанговыми глубинными насосами

Причинами неисправностей при эксплуатации колонн стальных насосных штанг:

- ü выход из строя в результате коррозии
- **ü** выход из строя в результате механического повреждения поверхности стержня
- **ü** выход из строя в результате изгиба (любой изгиб стальных штанг меняет структуру металла и приводит к повышению напряжений в этих местах)
- **ü** выход из строя в результате знакопеременных нагрузок (колонна насосных штанг подвергается вибрациям в результате работы привода, резьбовые участки стальных штанг более жесткие на изгиб, что вызывает усталостные изломы)

Насосная штанга для добычи нефти (2 из 3)

Компания «Гален» может производить насосные штанги из композитного материала собственного производства

Основные преимущества использования насосных штанг из композитного материала:

- **ü** модуль эластичности в 4 раза меньше, чем у стальных, поэтому возможность растяжения выше примерно в 4 раза
- **ü** вес приблизительно на 70% меньше, чем стальных, поэтому уменьшается нагрузка на редуктор и систему передач, т.е. мощность увеличивается мощность редуктора поднимать жидкость
- **ü** снижение веса колонны штанг в 2 и более раза ведет к экономии электроэнергии до 30%, расчетная потребляемая мощность уменьшается на 20-25%
- **ü** за счет снижения нагрузок на редуктор и систему передач увеличивается количество качаний, что увеличивает объем добываемой жидкости
- **ü** применение колонн из стеклопластиковых штанг позволяет осуществлять добычу в скважинах с глубиной подвески до 5000 м
- **ü** высокая стойкость к химическому воздействию продукта скважин, в том числе H₂S и CO₂ способствует увеличению срока службы и, следовательно, увеличению межремонтного периода

Насосная штанга для добычи нефти (3 из 3)

Применение стеклопластиковых насосных штанг гарантирует

- **ü** Повышение объема добычи
- **ü** Оптимизацию работы качалок, включая:
 - § повышение до 100% эффективности работы существующего насоса
 - § снижение веса штанговой колонны
 - § увеличение числа качаний и длины хода насоса без увеличения нагрузки на редуктор и систему передач
 - § снижение потребления электроэнергии на единицу добываемой продукции (в среднем на 30%)
 - § исключение отложений парафинов
 - § высокую коррозионную стойкость
 - § исключение обрывов
 - § повышение надежности и срока службы установок

Композитная шахтная крепь

Рисунок 12. Композитная шахтная крепь «Гален»

Композитный стержень из базальтового или стекловолокна, пропитанного эпоксидным компаундом

ü длина от 1,8 до 3 м

ü песчаное покрытие

ü на конце закреплена металлическая муфта с резьбой

ü применяется для армирования кровли и бортов шахт, крепления специальной сети против обрушения породы при добыче полезных ископаемых подземным способом

ü с 2009 г. проводятся испытания на шахте «Большевик», г. Междуреченск

Отличительные характеристики продукта

ü хорошо срезается проходческим щитом повышение скорости проходки и долговечности бура

ü высокая разрывная прочность не < 9,5 тонн стержень меньшего диаметра позволяет уменьшить диаметр отверстия в породе и снизить расход быстротвердеющей смолы

ü легче металлической в 10 раз по причине свойств материала и меньшего диаметра прутков, сокращение транспортных расходов

ü повышенная огнестойкость

ü не накапливает статического электричества

Дорожные опоры освещения, энергоопоры

Дорожные опоры освещения (1 из 2)

Существующие типы опор: бетон, металл, древесина

Основные требования: долговечность, простые условия эксплуатации, низкая стоимость, эстетичный внешний вид

Преимущества композитных опор освещения

- **ü** устойчивы к износу, не подвержены коррозии, негативным атмосферным явлениям, в том числе ультрафиолету
- **ü** не требуют специального обслуживания (чистка от ржавчины, покраска, заделывание трещины и т.д.)
- **ü** рассчитаны на применение во всех ветровых зонах
- ü чрезвычайно удобны и малозатратны в монтаже, легко транспортируются
- **ü** позволяют без усилий сверлить отверстия и каналы для кабелей, навесного оборудования
- ü не горят!
- **ü** экологически безопасны

Безопасность!

Ударобезопасны по сравнению с железобетонными и металлическими аналогами. Не наносят травм участникам движения и серьезных повреждений транспортным средствам при ДТП.

В случае наезда сильному механическому повреждению подвергается опора, а не автомобиль с водителем и пассажирами.

Дорожные опоры освещения (2 из 2)

ГОТОВОЕ РЕШЕНИЕ ДЛЯ ОСВЕЩЕНИЯ АВТОСТРАД!

ü Солнечная батарея

üАккумулятор

ü Светодиодный светильник

Преимущества

ü Отсутствует необходимость в подведении электроснабжения

ü Сокращение сроков и затрат на монтаж

ü Срок службы 80 000 - 90 000 часов*

ü Экономят энергию в среднем до 75% и >*

Применение

üПлатная автодороги:через каждые 30-40 мüОстановки общественного транспорта

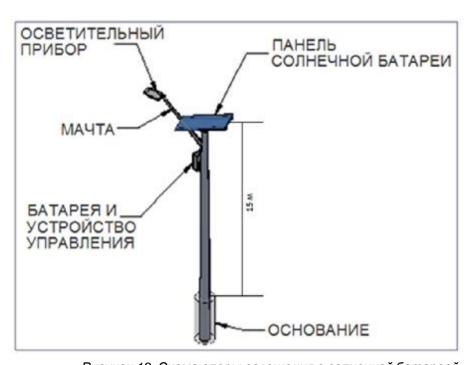


Рисунок 13. Схема опоры освещения с солнечной батареей

^{*} http://www.lightfactory.eu/

Энергоопоры для ЛЭП

Воздушная линия электропередачи - устройство, предназначенное для передачи или распределения электроэнергии по проводам, находящимся на открытом воздухе и прикреплённым с помощью траверс, изоляторов и арматуры к опорам из стали или бетона.

Основные проблемы:

- **ü** генерация блуждающих токов в электроопорах из железобетона вызывает коррозию стальной арматуры и энергопотери
- **ü** большая металлоемкость для снижения воздействия коррозии на стальную арматуру и компенсации потерь прочности

Энергоопоры, армированные композитной арматурой, благодаря свойствам материала идеально подходят для применения в строительстве воздушных ЛЭП!

ü В настоящее время ООО «Гален» совместно с компанией «СТМ «Строительные технологии и машины», г.Жигулёвск, начинают выпуск электроопор с преднапряженной композитной арматурой в г.Мамадыш, по заказу предприятий электросетей Республики Татарстан

Предложения Гален

Рассмотреть возможность применения композитной наномодифицированной арматуры в:

- **ü** Гражданском строительстве крупнопанельное домостроение, гражданское строительство
- **ü** Дорожном строительстве бетонное покрытие/основание региональных дорог, мостов (создание опытного участка с использованием плит ПДН или ПАГ на территории Республики Татарстан), освещение автодорог
- **ü** Добывающей промышленности нефтепромысловое оборудование, шахтная крепь
- ü Электроэнергетике энергоопоры для ЛЭП

О компании

ООО «Гален» – отечественный производитель современных композитных материалов методом пултрузии на основе базальтопластика

- **ü** Лидер на рынке России по базальтопластиковым строительным материалам; более 50% рынка композитных связей России и СНГ (Инфомайн, 2009 г.)
- **ü** Производитель средств производства пултрузионных линий; технология отмечена III местом на Международном конкурсе «Пултрудер Года», Май 2009, Балтимор, США
- ü Экспортно-ориентированный бизнес: гибкие связи Великобритания, Казахстан, Египет
- ü Сертификация BBA в 2009 году: поставляемые в EC гибкие связи имеют сертификат British Board of Agrément сертифицирующей организации Великобритании
- **ü** В 2009 году получен грант от «Роснауки» по теме «Нанокомпозиционные материалы для строительной индустрии с комплексом улучшенных механических и теплофизических свойств и повышенной огнестойкостью на основе эпоксидных матриц»

Патенты

- ü 15 патентов на изобретения и полезные модели, ноу-хау
- **ü** Получено решение о выдаче патента на изобретение «Нанокомпозиционный материал» и приоритет на патент «Наномодифицированный арматурный элемент»

Благодарим за внимание! Вопросы?