Наноматериалы автохимии

-->

Нанотехнологические препараты автохимии

Наноматериалы и нанотехнологии находят всё большее применение в различных химических препаратах для автомобильной промышленности, называемых потребителями попросту «автохимией» и «автокосметикой». К таким разработкам относятся различные ремонтно-эксплуатационные присадки и добавки к топливу и смазочным материалам, а также лакокрасочные покрытия, шампуни, полироли и некоторые другие товары

Avto_nano_cosmetics.jpg .

Поэтому целью данной статьи не является оценка или сравнение тех или иных препаратов автохимии разных производителей, а в связи со значительным интересом научной, да и в целом автомобильной общественности к этому направлению практического применения достижений нанотехнологии, информация их об имеющихся разработках.

Совместное использование теоретических положений и практических достижений трибологии (греч. tribos – трение, logos – наука – изучает контактное взаимодействие твердых тел при их относительном движении, включая весь комплекс вопросов трения, изнашивания, смазки) и нанотехнологии, позволяет использовать трение, не как разрушительное явление природы, а как самоорганизующийся созидательный процесс, в том числе для безразборного восстановления агрегатов и узлов техники в процессе их непрерывной эксплуатации.

  • Под безразборным сервисом подразумевается комплекс технических и технологических мероприятий, направленных на проведение операций технического обслуживания и ремонта узлов и механизмов без проведения разборочно-сборочных операций с применением передовых разработок химической промышленности. Безразборный сервис может включать операции обкатки (приработки), диагностики, профилактики (сезонной подготовки), автохимического тюнинга, очистки и восстановления, как отдельных соединений, так и агрегатов и механизмов в целом [1–3].

Теоретическими предпосылками безразборного сервиса (восстановления) явились исследования в теории самоорганизации, предсказанной бельгийским физиком и физикохимиком русского происхождения Ильей Романовичем Пригожиным (лауреат Нобелевской премии по химии 1977 г. «за работы по термодинамике необратимых процессов, особенно за теорию диссипативных структур». И.Р. Пригожин в Бельгию был привезен родителями из России в раннем детстве. В 1982 г. он был избран иностранным членом Академии наук СССР, а с 1991 г. является иностранным членом Российской академии наук – РАН.)

  • В прикладном плане безразборный сервис базируется на научных открытиях российских ученых. К ним в первую очередь, относится явление избирательного переноса при трении (эффекта безызносности), открытое и исследованное Д.Н. Гаркуновым и И.В. Крагельским [4–5]. Другим немаловажным открытием в этой области является эффект пластифицирования поверхностей трения в присутствии поверхностно-активных веществ (ПАВ), сделанное Петром Александровичем Ребиндером и его учениками. В тридцатых годах XX века П.А. Ребиндер открыл эффект понижения прочности твердых тел, благодаря адсорбции поверхностно-активных веществ, что приводит к облегчению выхода дислокаций.

Теоретическую возможность создания условий безызносного трения подтверждает факт открытия в 1969 г. эффекта аномально низкого трения (АНТ) твердых тел, обнаруженного группой ученых Аскольдом Александровичем Силиным, Евгением Анатольевичем Духовским, Виктором Львовичем Тальрозе и др. Ими было установлено, что при бомбардировке полиэтилена и пропилена в вакууме потоком атомов гелия (или некоторыми другими химическими элементами) коэффициент трения уменьшался на два порядка до значения ниже 0,001 (предел чувствительности измерительной установки), что можно говорить о его исчезновении. Интенсивность изнашивания при этом, естественно, резко снизилась.

  • На основании дальнейших исследований, в том числе во ВНИИ оптико-физических измерений, было выявлено, что при облучении тончайшего поверхностного слоя вещества ускоренными атомами происходит его переход в упорядоченное состояние. Силин А.А. позднее в своей книге «Трение и мы» (1987 г.) пишет:

«Экспериментально подтверждалось, что фундаментальной причиной трения служит отнюдь не механическое деформирование дорожки, а адгезионный эффект, сконцентрированный в тончайшем поверхностном слое. Реализация такого эффекта, основанного на непрерывном обмене адгезионных связей, требует толщины слоя всего 10–7 см {10 нм – Прим. автора}, т.е. порядка удвоенной толщины атома. Таким образом, опыты с эффектом АНТ в данном случае однозначно подтверждали адгезионную теорию сухого трения… Не исключено, что при этом важную роль играет явление самоорганизации» [6].

Безразборный сервис транспортных средств является дальнейшим развитием исследований в этих областях и, как видно из приведенных выше данных, в основном базируется на положениях нанонауки. Термин стал широко применяться в последовавших за этим многочисленных публикациях и нескольких монографиях по данному новому научно-практическому направлению. Во вступительном слове на открытии научно-практической конференции «Нанотехнологии и информационные технологии – технологии XXI века» (24 мая 2006 г.), организованной Министерством образования и науки РФ и Российской академией наук, советник Президента России профессор Асланбек Аслаханов высоко оценил результаты исследований в этой области, заявив:

«Безразборный сервис машин и механизмов» является одним из эффективных направлений практического применения наноматериалов».

В условиях недостатка финансовых средств у большинства населения, определенного дефицита доступных качественных топливно-смазочных материалов проблема поддержания в работоспособном состоянии отечественной и импортной техники может быть во многом решена за счет применения специальных ремонтно-эксплуатационных препаратов, в том числе разработанных на основе наноматериалов и нанотехнологий.

Известные автохимические препараты для безразборного сервиса автотракторной техники могут быть отнесены к нанотехнологическим разработкам по трем основным критериям:

  • применение в их составе наноразмерных частиц (ультрадисперсные алмазы, металлические порошки, политетрафторэтилен (PTFE), модифицированный графит и т.д.);
  • использование компонентов, полученных (произведенных) с использованием нанотехнологий, например золь-гель технологии (рекондиционеры);
  • формирование на поверхностях трения вследствие взаимодействия с активными компонентами этих препаратов защитных наноразмерных (наноструктурированных) покрытий и структур (ионные металлоплакирующие присадки, кондиционеры, геомодификаторы).

Несомненно, что все вышеперечисленные свойства в той или иной мере присущи практически всем ремонтно-восстановительным препаратам автохимии, применяемых для безразборного сервиса (восстановления) автотехники. В одних случаях, они являются определяющими для того, чтобы быть отнесенными к нанотехнологическим препаратам, а в других, могут быть отнесены к вспомогательным (дополнительным) эффектам. Например, во всех препаратах наряду с макрочастицами могут находиться и наноразмерные частицы. Следует также отметить тот факт, что практически все вопросы трибологии связаны с изучением процессов, протекающих в поверхностном слое (межфазной границе) контактируемых деталей.

  • При этом самым простым наноматериалом препарата автохимии или автокосметики могут служить фрагменты вещества, измельченные до наноразмерного состояния или полученные каким-то другим физическим или химическим способом, имеющие хотя бы в одном измерении протяженность не более 100 нм и проявляющие качественно новые свойства (физико-химические, функциональные, эксплуатационные и др.). Это могут быть и сферические (многогранные) частицы, нановолокна (например, PTFE), пластинки монтмориллонита или иглы серпентина.

Реально диапазон рассматриваемых объектов гораздо шире – от атомов и молекул до их кластеров и полимерных органических молекул, содержащих свыше 100 атомов и имеющих размеры даже более 1 мкм в одном или двух измерениях. Принципиально важно, что они состоят из небольшого числа атомов, и, следовательно, в них уже в значительной степени проявляются дискретная атомно-молекулярная структура вещества, квантовые эффекты, энергетика развитой поверхности наноструктур.

В соответствии с вышесказанным, в настоящее время к нанотехнологическим препаратам автохимии для применения в качестве и присадок и добавок к смазочным материалам автотракторной техники следует отнести следующие разработки:

  • 1.Приработочные препараты на основе наноалмазов (Lubrifilm Di-amond Run In, Fenon Nanodiamond Green Run и др.). Входящие в состав присадок наноалмазы (диаметром 4…6 нм) и кластерный углерод структурируют масляную пленку, увеличивают ее динамическую прочность, действуют на кристаллическую решетку поверхности металла, упрочняя ее, формируют новые поверхности трения, уменьшая граничное трение и износ (особенно при больших нагрузках и дефиците смазочного материала). В результате сокращается время обкатки и оптимизируется качество трущихся соединений, улучшается работа двигателя, экономятся топливо и масло, а также снижаются вредных выбросов и облегчается запуск двигателя
  • 2.Кондиционеры металла (Energy release, SMT2 и др.) В результате трибохимических реакций (образования, распада и восстановления в зоне трения соединений металла с активными молекулами продукта) эти кондиционеры образуют защитный граничный слой (20 – 40 нм). Защитный слой приобретает пластичные и упругие свойства, антифрикционные качества и одновременно стойкость к высоким нагрузкам.
  • 3.Рекондиционеры (Old Chap, Tensai). Препараты созданы с применением золь-гель технологии. Наряду с образованием на поверхностях трения защитных слоев дополнительно способствуют повышению несущей способности (прочности) масляной пленки. Полимолекулярная система препарата, включающая в себя наноразмерные комплексы (кластеры) органических веществ (рис. 3–4), структурирует граничную масляную пленку и увеличивает адгезию масла к металлу.
  • 4.Восстановительные присадки или реметаллизанты (Return Metal, Renom Engine NanoGuard и др.) Содержат маслорастворимые или порошковые металлорганические соединения (рис. 2). Реализуют трибохимический («ионный») механизм металлоплакирования поверхностей трения за счет образования (восстановления) на поверхности трения металлосодержащей, наноструктурированной защитной пленки. Присадки способствуют «лечению» нано- и микродефектов поверхностей трения и восстановлению их работоспособности.
  • 5.Геомодификаторы (Fenom nanotechnology, RVS и др.) Препараты автохимии на основе минералов естественного (рис. 5) и искусственного происхождения (нано- и микроуровня) получили наименование «геомоди-фикаторы», «геоактиваторы», «ремонтно-восстановительные составы» (РВС-технология) или «ревитализанты». Попадая на поверхности трения вместе с маслом или в составе пластичной смазки, инициируют процесс формирования на трущихся поверхностях металлокерамической наноразмерной структуры с высокой износостойкостью и малым коэффициентом трения.

Применение ремонтно-восстановительных препаратов для безразборного сервиса определяется техническим состоянием автомобиля. При этом необходимость того или иного воздействия или препарата оценивается на основании результатов технической диагностики. По результатам диагностирования назначается либо профилактические препараты, более «мягкого» действия, либо препараты, обеспечивающие более интенсивное воздействие на трущиеся соединения и агрегаты автомобиля.

Рассмотренные нанопрепараты позволяют:

  • значительно повысить износостойкость деталей;
  • сократить продолжительность и улучшить качество приработки поверхностей трения;
  • эффективно повысить задиростойкость и снизить питтинг контактирующих поверхностей в тяжело нагруженных парах трения; понизить температуру работающих узлов, уровень шума и вибрации.

Более подробно об особенностях применения и эффективности тех или иных препаратов безразборного сервиса можно почитать на персональной странице автора данной статьи [7].

Разработки наиболее эффективны в условиях граничного трения, при высоких нагрузках и скоростях скольжения, повышенной температуре трения и «масляном голодании», характерных для изношенных трущихся соединений техники с большим сроком службы, режимах приработки и перегрузках. Образование устойчивых защитных металлических пленок это достаточно продолжительный (постепенный) процесс, поэтому при испытаниях, а также штатной работе техники, может не наблюдаться резкого (внезапного) улучшения эксплуатационных показателей, но обязательно отмечается их положительная динамика, существенно влияющая на повышение надежности и ресурса узлов и агрегатов техники.

Список литературы:

  1. Балабанов В.И. Нанотехнологии. Наука будущего. М., Эксмо, 2009. – 248 с.
  2. Балабанов В.И. Все о присадках и добавках для автомобилиста. М., Эксмо, 2008. – 240 с.
  3. Балабанов В.И. и др. Безразборный сервис автомобиля (обкатка, профилактика, очистка, тюнинг, восстановление) М., Издательство УДП РФ «Известия», 2007. – 272 с.
  4. Гаркунов Д.Н. Триботехника. Износ и безызносность. М.: МСХА – 600 с.
  5. Гаркунов Д.Н., Балабанов В.И. Восстановление двигателей внутреннего сгорания без их разборки / Тяжелое машиностроение. 2000. № 2. С. 18…23.
  6. Силин А.А. Трение и мы. М.: Наука, 1987. – 192 с.
  7. AGA-Автомаг. Консультации специалиста.

Балабанов В.И.

http://www.nanometer.ru/…_156241.html



nikst аватар
  • Да, было бы весьма выгодным объединить два этих направления техники: автомобильный транспорт (и другие виды транспорта или другие двигатели и механические агрегаты) с нанотехнологиями. Фактически, это и происходит в настоящее время прямо у нас на глазах. И данный обзор служит как раз (популяризации) этой цели…