Nano: Самое интересное

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Группе ученых удалось создать искусственный аналог ДНК, а также получить ферменты, способные копировать информацию, записанную в таких «поддельных» молекулах. Работа исследователей опубликована в журнале Science, а коротко о ней пишет New Scientist.

Ученые из Швейцарского федерального политехнического университета Лозанны (Swiss Ecole Polytechnique Federale de Lausanne, EPFL), занимающиеся вирусологией, проведя ряд исследований, обнаружили у вируса крошечное оружие, размеров в нанометр, с помощью которого вирус успешно атакует и убивает бактерии. Толщина острия этого оружия всего в 20 раз превышает диаметр атома гелия, что позволяет вирусам-бактериофагам беспрепятственно атаковать бактерии, имеющие достаточно толстую и прочную мембрану, бактерии сальмонеллы и бактерии семейства E.Coli.

Ученые создали вирус, грозящий убить миллионы людей

В 2012 году отмечается 40-летие принятия «Конвенции о запрещении разработки, производства и накопления запасов бактериологического (биологического) и токсинного оружия и об их уничтожении» (Москва – Лондон – Вашингтон, 10 апреля 1972 г.).

Движение электронов в кристаллических решетках некоторых материалов может стать основой множества интересных явлений. Группы электронов, имеющих схожее поведение, особенно при чрезвычайно низких температурах, могут рассматриваться как некие квазичастицы, обладающие свойствами иногда разительно отличающиеся от свойств электронов. Существование квазичастиц определяется теорией физики элементарных частиц, которая так же описывает их свойства и поведение, но до сих пор ученым не удавалось наблюдать не только непосредственно некоторые их квазичастиц, но даже и следы их существования.

Группа исследователей из Мэрилендского университета в Колледж-Парке (США) обнаружила: когда электрический ток проходит через углеродные нанотрубки, объекты, расположенные неподалёку, нагреваются, в то время как сами нанотрубки остаются прохладными.

Гонконгские исследователи провели ряд опытов с созданной ими графеновой батареей, которая, по их мнению, извлекает электрическую энергию из тепловой. При этом вес генерирующей электричество установки был экстремально низким: авторы работы заявляют об удельной энергоёмкости в 70 кВт•ч/кг.

Известие о том, что «Роснано» в очередной раз приняла решение о закрытии двух десятков инвестпроектов по созданию отечественных производств продукции, в основу которой положены нанотехнологии, изрядно всколыхнуло общественность. И особой радости от того, что бюджет «сэкономил» около 30 млрд. рублей почему-то не возникло.

Американские и европейские биологи обнаружили белок, который делает раковые клетки неуязвимыми для иммунной реакции организма, и нашли способ блокировать его, что привело к уничтожению человеческих раковых опухолей в теле мыши, говорится в статье в журнале Proceedings of the National Academy of Sciences.

Закон сохранения энергии новичок не нарушает, поскольку в подсчёте его эффективности имеется одна хитрость. Тем не менее твердотельное устройство продемонстрировало работу в режиме, выходящем далеко за пределы привычной конверсии электрического тока в свет.

Новый полевой туннельный транзистор, изготовленный на основе графена, был разработан командой ученых Манчестерского университета, возглавляемой Лауреатами Нобелевской премии профессорами Андреем Геймом и Константином Новоселовым. Использование графена в качестве ключевого материала транзисторов и других полупроводниковых приборов имеет огромный потенциал для того, что бы графен можно было рассматривать как достойную замену кремниевым технологиям. Именно этот потенциал и перспективы привлекают внимание таких производителей полупроводниковой продукции, как IBM, Samsung, Texas Instruments и Intel. И некоторые группы ученых уже успешно создали графеновые транзисторы, способные работать на частотах от 100 до 300 ГГц.

Графен, самый тонкий и прочный материал в мире, является своеобразной формой углерода, кристаллическая решетка которого имеет толщину в один атом. Обладая рядом уникальных физических и химических свойств, графен, в своем оригинальном виде не имеет совершенно никаких магнитных свойств. Т.е. он совершенно не магнитится и не реагирует на магнитные поля, как другие магнитные материалы, такие как железо или никель. Но ученые из Манчестерского университета обнаружили, что с помощью дополнительной обработки графен можно превратить в магнитный материал, что открывает совершенно новые перспективы использования этого материала в электронных устройствах.

В вычислительной области использование фотонов света, как носителей информации, оставляет далеко позади использование электронов по скорости выполнения вычислений. Это означает, что оптические микропроцессоры будут намного быстрее своих электронных аналогов. Но что бы создавать оптические процессоры требуется разработка оптических аналогов базовых электронных устройств – транзисторов и диодов. Оптические диоды уже существуют, но для их работы требуется наличие некоего внешнего воздействия, что делает их совершенно непригодными для использования в чипах оптических процессоров. Теперь же группа исследователей из университета Пурду разработала «пассивный оптический диод», которые для работы не требует никаких внешних воздействий и является настолько маленьким, что на кристаллах чипов можно размещать миллионы таких устройств. Это, в свою очередь, может привести к реализации более быстрых микропроцессоров и суперкомпьютеров на их основе.