Транзистор из креветки?

Прототип устройства, позволяющего компьютерам напрямую взаимодействовать с живыми организмами, создан на основе хитозана — биополимера, добываемого из панцирей ракообразных (об этом кратко мы уже писали).

В электрических устройствах, созданных человеком, начиная с лампы накаливания и кончая ноутбуком перенос информации осуществляется посредством электронов, или, чтобы быть совсем точным, потока электронов и «дырок» с открытием полупроводников и р-n-перехода.

Передача же сигналов внутри живых систем, тех же нервных импульсов или команд, регулирующих обмен веществ, осуществляется иначе — с помощью ионов (электрически заряженных атомов) и протонов (ядер атомов водорода, лишенных электрона — собственно, простейшей разновидности ионов).

Устройства, способные подключаться к живым сигнальным системам непосредственно и выполнять функции точных биосенсоров, биоконтролеров или бионических протезов, требуют создания и соответствующих адекватных интерфейсов, гарантирующих быстрое время отклика и минимальные потери информации, курсирующей между таким устройством и организмом.

Понятно, что современные биодатчики или нейропротезы с их чужеродными для клеток электрон-кремниевыми интерфейсами вряд ли смогут удовлетворять таким условиям в полной мере.

Поскольку никакой реальной альтернативы кремниевой микроэлектронике, достигшей больших успехов в обработке информации, пока никто не предложил (последний писк моды — «влажные» ДНК-процессоры — пока остается на уровне теории и первых экспериментов), идеальным вариантом стало бы создание прозрачного протон-электронного интерфейса, способного транслировать ионные сигналы в электронные и наоборот, а также биологически совместимого с живыми тканями.

shr.jpg Рис. 1. Схема первого протонного транзистора на биополимере: эммитер (source) и коллектор (drain) из гидрида палладия, мост из хитозана (желтая перемычка), изолятор-подложка (SiO2), база (gate). Справа – макромолекулярные волокна модифицированного хитозана. Внизу – молекулярная структура хитозана.

Статья, присланная в Nature Communications группой сотрудников Университета штата Вашингтон (США), возглавляемой профессором Марко Роланди, содержит описание и испытательные характеристики первого действующего прототипа подобного устройства —

протонного полевого транзистора на основе биополимера.

Как и его электронный собрат, протонный полевой транзистор также состоит из трех базовых элементов — эмиттера зарядов, коллектора и базы. Размеры его также вполне микроскопические — 5 микронов в ширину, что примерно в 20 раз тоньше человеческого волоса. Однако носителями тока в нем являются уже не электроны, а протоны, при этом роль полупроводника играют модифицированные макромолекулы хитозана — аминосахарида, получаемого из панцирей ракообразных.

Роль эмиттера и коллектора протонов в устройстве выполняют два электрода (хотя точнее было бы сказать протода) из гидрида палладия — прозрачного для протонов металводородного соединения. Два контакты из гидрида палладия соединены биополимерным мостом из хитозана.

Молекулярные волокна хитозана за счет абсорбции воды образуют множественные водородные связи, по которым благодаря механизму Гротгуса (см. справку) и мигрируют протоны.

Справка NNN: Механизм Гротгуса — механизм переноса протонов или же протонных дефектов в средах, где имеется водородная связь. Этот физический механизм был впервые предсказан Теодором фон Гротгусом. Передача иона водорода по цепочке связанных водородными связями молекул воды проходит в несколько стадий («эстафетный» механизм), практически же скорость «движения протонов в растворителе» определяется скоростью поляризации молекул растворителя (по материалам gazeta.ru).

При подаче напряжения на базу, изолированную от хитозана слоем оксида кремния, возникает электрическое поле и ток протонов в биополимере прекращается — мост работает в режиме Off. При отключении напряжения транзистор работает в режиме On.

Таким образом,

управляя электрическим полем, можно управлять и потоком протонов между эмиттером и коллектором — аналогично тому, как это происходит в полевых транзисторах.

Как видим, протонный полевой транзистор на биополимере представляет собой кремнийорганический гибрид — устройство, сочетающее неорганические и органические материалы и выполняющее функции прозрачного протон-электронного интерфейса. Такой транзистор можно использовать для управления протонным током, при этом сигналом, управляющим каким-нибудь биопроцессом, использующим протонную сигнальную систему, будет электрический сигнал, что в отдаленной перспективе позволит синтезировать кремнийорганические, то есть бионические, системы управления.

Справка NNN: Хитозан. Молекула хитозана содержит в себе большое количество свободных аминогрупп, что позволяет ему связывать ионы водорода и приобретать избыточный положительный заряд. Отсюда свойство хитозана как хорошего катионита. Это также объясняет способность хитозана связывать и прочно удерживать ионы различных металлов (в том числе и радиоактивных изотопов, а также токсичных элементов).

Хитозан способен образовывать большое количество водородных связей. Поэтому он может связать большое количество органических водорастворимых веществ (бактериальные токсины и токсины, образующиеся в процессе пищеварения).

Хитозан обладает многими свойствами, которые дают возможность применять его в большом количестве отраслей. Так, его применяют в качестве корма для животных, для изготовления продуктов питания и косметики, применяют в продуктах биомедицины, в сельском хозяйства.

Водорастворимое производное хитина используется большей частью в производстве средств для похудания. Хитозан способен в определённой мере связываться с молекулами жира в пищеварительном тракте. Жир, связанный с хитозаном, не усваивается и выводится из организма. Хитозан применяется как средство, способствующее снижению веса, а также для улучшения холестеринового обмена и перистальтики кишечника.

Хитозан обладает антибактериальными, противогрибковыми и антивирусными свойствами. Для хитозана также характерны мукоадгезивные свойства, то есть способность к прилипанию к слизистым оболочкам.

В середине 1970-х годов были предприняты первые попытки использования хитинов и хитозанов для заживления ран, в том числе ожоговых. Было установлено, что хитозан обладает антимикробной активностью, способностью поглощать биологические жидкости и помогать регенерации тканей. На основе этих волокнообразующих способностей хитина и хитозана были созданы саморассасывающиеся хирургические шовные материалы. Их используют как заменители кровеносных сосудов, катетеров, шлангов.

Хитозановые материалы не вызывают аллергических реакций и не теряют своей прочности.

Одним из свойств хитина и его производных является его способность к сорбированию (очистке организма). В природе (у насекомых, раков и т. д.) хитиновое покрытие носит защитную функцию, предохраняя внутренние органы от проникновения всякого рода токсинов. При применении хитозана в качестве энтеросорбента продукты на его основе проявляют интересные свойства. Так, перспективна его способность нейтрализовать избыточное выделение соляной кислоты желудком, он положительно влияет на слизистую оболочку желудочно-кишечного тракта.

Хитозан получают из панцирей красноногих крабов или из низших грибов путём удаления ацила (карбонового соединения), который придаёт жёсткость хитину (по материалам gazeta.ru).

Сейчас говорить о таких возможностях слишком рано: «креветочный» транзистор реализует самые базовые функции по управлению сигналами, и еще непонятно, можно ли эти функции сильно усложнить и, например,

создать протонный аналог электронного p-n-транзистора, сделав бутерброд из биополимеров с разными проводными свойствами.

По заявлению ученых, именно в этом направлении — создании устройств, позволяющих электронике полноценно взаимодействовать с живой материей, — конструкторы первого протонного кремнийорганического транзистора и будут двигаться.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (8 votes)
Источник(и):

1. gazeta.ru