Российские физики подняли КПД перовскитных солнечных батарей до рекордных 19 процентов

Физики из России и Италии повысили КПД наиболее распространенного типа перовскитных солнечных батарей — на основе иодида метиламмония и свинца — до рекордных 18,8 процента, добавив в них кремниевые наночастицы. Предложенный учеными способ модификации прост и дешев, а в будущем поможет увеличить КПД перовскитных батарей еще на несколько процентов. Статья опубликована в Advanced Optical Materials, препринт работы выложен на сайте arXiv.org.

Впервые внимание на перовскитные солнечные батареи обратили в 2009 году, когда группа ученых под руководством Акихиро Кодзимы (Akihiro Kojima) и Цутому Миясака (Tsutomu Miyasaka) изготовила первый солнечный элемент на основе металл-органических соединений. В качестве рабочего материала этого элемента использовался иодид метиламмония и свинца (CH3NH3PbI3), кристаллическая структура которого совпадает с минералом перовкситом; это и дало название новому устройству. КПД первых батарей не превышал четырех процентов — это было в десятки раз меньше КПД кремниевых батарей, однако для «сырой», не оптимизированной технологии значение было необычно большим. Кроме того, такие батареи были очень дешевы в производстве. Поэтому новая технология стала быстро развиваться, и к 2015 году эффективность перовскитных батарей на базе йодида свинца и йодида формамидиния достигла 20 процентов, практически сравнявшись с обычными кремниевыми батареями. В настоящее время она превышает 22 процента. Теоретически, КПД перовскитных батарей можно довести даже до 60 процентов, хотя на практике получить такой результат пока еще не удавалось.

Образцы перовскитных солнечных элементов, произведенные в Международной лаборатории гибридной нанофотоники и оптоэлектроники. ИТМО

Ключевую роль в работе перовскитной батареи играет поглощающий слой, от толщины которого зависят основные характеристики элемента. С одной стороны, тонкий слой плохо поглощает солнечную энергию, но хорошо проводит и разделяет образующиеся квазичастицы (электроны и дырки). С другой стороны, толстый слой имеет большое сопротивление, но хорошо поглощает свет. Таким образом, существует толщина, при которой эффективность необработанной перовскитной батареи максимальна. Например, КПД «чистой» оптимизированной батареи из иодида метиламмония и свинца — самого хорошо изученного и самого распространенного в этой области материала — составляет 17,7 процента. Добавляя в батарею золотые или серебряные наночастицы, удается повысить ее КПД до 18,2 процентов, а фактор заполнения (fill factor) — до 75,5 процентов, что является своеобразным рекордом (более высокие результаты получены с помощью других материалов). К сожалению, такие наночастицы вступают в химические реакции с иодом и имеют высокие оптические потери. Это ограничивает применение «улучшенных» батарей на практике.

Группа ученых под руководством Альдо Ди Карло (Aldo Di Carlo) из Римского университета Тор Вергата и Олега Макарова из Международной лаборатории гибридной нанофотоники и оптоэлектроники ИТМО поставила новый рекорд эффективности перовскитных батарей на основе иодида метиламмония и свинца, добавляя в них специальным образом спроектированные кремниевые наночастицы. Используя теорию рассеяния света на сферической частице (теория Ми), физики подобрали размер наночастиц таким образом, чтобы они «удерживали» свет в перовскитном слое — вступали в резонанс с падающим излучением и перераспределяли его энергию, чтобы она как можно эффективнее поглощалась материалом. Оказалось, что выгоднее всего добавлять в прибор частицы диаметром порядка 140–160 нанометров — эффективность их рассеяния максимальна для длины волны около 500 нанометров, отвечающей зеленому излучению, которое ярче всего представлено в солнечном излучении. Изготовить такие частицы сравнительно легко — достаточно сфокусировать лазерное излучение на кремниевой пластинке, помещенной в толуол (laser ablation of a silicon wafer in toluene).

Схема устройства и работы солнечной батареи. A. Furasova et al. / Adv. Optical Mater.

Фотографии батареи (поперечный срез) и наночастицы. A. Furasova et al. / Adv. Optical Mater.

Эффективность рассеяния света кремниевой наночастицы (a) и интенсивность фотолюминесценции перовскитной батареи (b). A. Furasova et al. / Adv. Optical Mater.

Затем ученые намазали получившийся коллоидный раствор наночастиц между перовскитным слоем и прижатым к нему слоем диоксида титана, а затем «отожгли» устройство и скрепили его слои. В результате КПД построенной батареи составило примерно 18,8 процентов, а фактор заполнения — 79 процентов. Это наилучшие показатели для батареи на основе иодида метиламмония и свинца. Кроме того, авторы статьи отмечают, что предложенный ими способ эффективности можно легко реализовать на практике, а потому он очень дешев. В будущем ученые собираются применить разработанную технологию уже на «рекордных» батареях, имеющих КПД около 22 процентов в необработанном виде. Если исследователям удастся повысить эффективность этих батарей хотя бы на процент, это будет уже настоящим прорывом.

Плотность тока (a) и квантовая эффективность (b) перовскитной батареи — до обработки наночастицами (черный) и после (красный). A. Furasova et al. / Adv. Optical Mater.

К сожалению, перовскитные батареи не только эффективны и дешевы в производстве, но и сравнительно недолго живут: даже самые лучшие образцы могут проработать не более 1500 часов. Тем не менее, ученые уже пытаются бороться с этим недостатком — например, снимают внутреннее напряжение, добавляют в структуру фторированный графен или совмещают перовскиты с обычными кремниевыми батареями. Впрочем, даже с учетом такой короткого срока службы польский стартап Saule Technologies обещает запустить коммерческое производство перовскитных батарей уже к концу текущего года.

Прочитать про работу ученых из ИТМО, работающих в развивающихся областях современной физики, можно в нашем материале «Большинство открытий пока еще не сделаны». В частности, в этом материале подробно рассказывается про исследования, проводимые в лаборатории гибридной нанофотоники и оптоэлектроники.

Автор: Дмитрий Трунин

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (1 vote)
Источник(и):

nplus1.ru