Волновые свойства частиц могут проявляться при столкновениях

Старший научный сотрудник физического факультета ТГУ Дмитрий Карловец вместе с Валерием Сербо из Института математики СО РАН показали, что наблюдать волновые свойства массивных частиц можно и при комнатной температуре, практически в любой современной физической лаборатории, нужно лишь хорошо сфокусировать пучок частиц. Статья с результатами теоретического исследования опубликована в одном из самых престижных журналов по физике – Physical Review Letters.

Обычно волновые свойства частиц хорошо проявляются в физических экспериментах при низких температурах, например, в явлении сверхпроводимости. Необходимость охлаждать частицы делала исследования волновой природы материи довольно дорогими.

  • Мы придумали, как поставить эксперимент, при котором волновые свойства частиц будут проявляться при комнатной температуре. Для этого ничего не нужно охлаждать, а просто хорошо фокусировать пучок, – объясняет Дмитрий Карловец, старший научный сотрудник лаборатории теоретической и математической физики ФФ.

Согласно идее физиков-теоретиков, пучок электронов нужно сфокусировать в пятно размером с атом водорода. В этом случае достаточно современных электронных микроскопов, которые есть во многих научных центрах мира, в том числе и в ТГУ.

  • Ранее ученые думали, что волновые свойства частиц при комнатной температуре будут проявляться при фокусировке в так называемую комптоновскую длину волны – а она очень мала, например, для электрона это около 10-13 метра. Размер атома водорода на три порядка больше: 0,5*10-10 метра, а такая фокусировка уже достигнута, например, в Университете Антверпена в Бельгии – продолжает Дмитрий.

Далее физики показали, что волновые свойства частиц будут проявляться особенно ярко, если электроны находятся в специальных квантовых состояниях. В квантовой оптике ученые умеют создавать микроскопические аналоги «котов Шредингера»: это известный мысленный эксперимент про кота в закрытой коробке с ядом; пока мы не наблюдаем кота, он находится в состоянии суперпозиции и неизвестно, жив он или мертв. Так же и с волнами: когда два пучка электронов накладываются друг на друга, они могут интерферировать, то есть либо усиливать друг друга, либо гасить. В той области пространства, где происходит деструктивная интерференция, вероятность для электрона иметь определенные координату и импульс становится отрицательной – свойство, необъяснимое на языке классической физики.

  • Если светить простым пучком на атом, то электроны начинают рассеиваться, поглощаться или делать что-то еще. А если светить на атом водорода таким «котом» (двумя наложенными друг на друга пучками), то в области между пучками атом начинает хуже чувствовать эти электроны, потому что там происходит деструктивная интерференция, – объясняют исследователи. – Это приводит к изменению свойств рассеянных электронов и может наблюдаться экспериментально.

Таким образом фокусировка «шредингеровского кота» электронов на атом водорода позволит изучать чисто квантовые эффекты в столкновении частиц, которые никогда раньше в физике частиц не наблюдались.

Исследование находится на стыке физики частиц и квантовой оптики и продолжает традиции университетской школы теоретической физики. Работа имеет фундаментальный характер, однако после выхода статьи возможно экспериментальное продолжение. В России подобные экспериментальные исследования практически не проводятся. В мире они ведутся в University of Antwerp (Антверпен, Бельгия), в National Institute of Standards and Technology (США), в Institute for Metallic Materials (Дрезден, Германия), в Delft University of Technology (Голландия), в Tel Aviv University (Израиль) и других.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (1 vote)
Источник(и):

www.tsu.ru