Создан робот, способный изучить, понять и использовать язык человека

Группа исследователей из университета Пурду (Purdue University), возглавляемая профессором Джеффри Марком Сискиндом (Jeffrey Mark Siskind), разработала набор из трех программных алгоритмов, позволяющих роботу изучить значения отдельных слов и использовать эти слова для того, чтобы понять суть предложений и составить свои собственные предложения. Для проверки работы этих алгоритмов был взят небольшой колесный робот, оснащенный несколькими камерами и компьютером с достаточной вычислительной мощностью, который был направлен в помещение с различными объектами, такими, как стулья, стол, дорожный конус и т.п.

Для обучения робота языку привлеченными со стороны людьми, не знакомыми с решаемой задачей, было составлено несколько предложений, описывающих путь, который должен пройти робот. И после этого оператор, выступивший в роли учителя языка, провел робота по пути, описанном в предложениях. Используя алгоритмы и некоторые дополнительные данные, робот сумел распознать отдельные слова предложений и связать их с объектами, попавшими на пути в поле зрения его камер.

«После некоторого периода таких тренировок робот уже смог составлять свои собственные предложения, описывающие проделанный им путь» – рассказывает профессор Сискинд, – «Более того, робот сумел составить предложения, в которых он в больших деталях описывает отдельные этапы его пути. И все это делается благодаря алгоритмам, дающим роботу возможность сопоставления данных от камер и сенсоров с событиями и со словами переданных ему предложений».

20170302_6_2.jpg

Следует отметить, что, изучая значение отдельных слов, робот обрел возможности, выходящие далеко за пределы возможностей существующих систем управления автомобилями-роботами, которые, как правило, используют данные подробных карт местности, по которой они двигаются в данный момент времени, и данные от камер, при помощи которых они обнаруживают препятствия, стоп-сигналы других автомобилей, пешеходов, дорожные знаки и знаки дорожной разметки. Но, никакая из таких систем не способна связать слова с объектами и выполнить указание типа: «поверни направо перед большим серым зданием, а после супермаркета с яркой желтой вывеской поверни налево».

А сейчас исследовательская группа продолжает расширять возможности своих алгоритмов, что даст роботу возможность распознавать большее разнообразие объектов на изображениях с камер, использовать большее количество слов и фраз, описывающих путь и ситуации, которые могут произойти во время движения.

«Мы надеемся, что для данной технологии в будущем найдется масса областей применения, основной из которых станут автономные транспортные средства различных типов» – рассказывает профессор Сискинд.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (4 votes)
Источник(и):

www.dailytechinfo.org