DARPA заказало разработку мозговых имплантатов высокого разрешения для интерфейса «мозг-компьютер»

Paradromics Paradromics

Управление перспективных исследовательских проектов Министерства обороны США (DARPA) заключило шесть контрактов на разработку нейроинтерфейсов по программе Neural Engineering System Design (NESD). Эта программа ставит целью «значительно улучшить возможности для исследований нейротехнологий и обеспечить основу для новых методов лечения».

На практике DARPA стремится разработать имплантируемый нейроинтерфейс, который обеспечит «беспрецедентные разрешение сигнала и скорость передачи данных между человеческим мозгом и цифровым миром». В техзадании указано, что интерфейс должен работать как конвертор-переводчик, преобразуя электрохимические сигналы мозга в цифровой код (нули и единицы), который используется в информатике. И выполнять обратное преобразование для записи данных в мозг. Цель — коммуникационное устройство для интерфейса «мозг-компьютер» объёмом не более 1 см3.

1434cc22ba94b83e647db0824a6a48f1.jpgParadromics

Контракты заключены с пятью научно-исследовательскими организациями и одной коммерческой компанией:

  • Университет Брауна. Декодирование нейронной обработки речи с акцентом на тон и вокализацию. Интерфейс состоит из 100 00 сенсоров (neurograin), имплантируемых на поверхность или внутрь коры головного мозга. Отдельный радиомодуль обеспечивает питание имплантата и служит хабом для передачи данных в центр управления и из центра. Там, в свою очередь, выполняется транскодирование и обработка нейронных и цифровых сигналов.
  • Колумбийский университет. Биоэлектрический интерфейс в зрительной коре с помощью гибкой микросхемы КМОП со встроенным массивом электродов. На голове человека монтируется рентрансляционная стация для передачи сигнала и беспроводной передачи энергии на имплантат.
  • Fondation Voir et Entendre (Фонд зрения и слуха). Интерфейс оптогенетической коммуникации между нейронами зрительной коры и искусственной ретиной высокого разрешения с видеокамерой, которая устанавливается на место глаза.
  • Лаборатория Джона Б. Пирса. Изучение зрения. Интерфейс для коммуникации с модифицированными нейронами, способными к биолюминисценции и реагирующими на оптогенетическую стимуляцию.
  • Калифорнийский университет в Беркли. Голографический микроскоп «светового поля», который способен записывать и модулировать активность до 1 миллиона нейронов коры головного мозга. Попытка создать модели кодирования для предсказания реакции нейронов на внешнюю визуальную и тактильную стимуляцию, а затем применить эти шаблоны для восстановления зрения у слепых пациентов или управления искусственными протезами с помощью мысленных команд.
  • Paradromics, Inc. Высокоскоростной интерфейс к коре головного мозга через решётку проникающих микропроводов для стимуляции отдельных нейронов и снятия информации с них в высоком разрешении. Предполагается, что имплантат поможет восстановить речевые функции.
d5a76a619e3e78b52634e340f6824996.jpg

2341b2ec39692854c9316b6bd747902a.jpgДиаметр каждого микропровода Paradromics менее 20 мкм

«Сегодня лучшие системы с интерфейсом „мозг-компьютер” похожи на два суперкомпьютера, которые пытаются общаться на скорости 300 бод, — говорит Филипп Альвельда (Phillip Alvelda), менеджер программы NESD. — Представьте, какие перспективы откроются, если мы обновим наши инструменты и действительно откроем канал между человеческим мозгом и современной электроникой».

Среди самых очевидных применений нового интерфейса — компенсация информации для людей с нарушениями слуха и зрения. Они смогут получать необходимую картинку и звук прямо в мозг, а её разрешение теоретически может превосходить возможности натурального человеческого зрения и слуха (например, данные для передачи можно брать со направленных микрофонов, инфракрасных камер и тепловизоров). Вероятно, такие интерфейсы найдут применение и в военном деле.

На сегодняшний день лучшие нейроинтерфейсы собирают информацию всего лишь по 100 каналам, каждый из которых объединяет информацию с десятков тысяч нейронов одновременно. В результате получается размытая и зашумлённая картинка с низким разрешением, которая не даёт возможности чётко восстановить отдельные мысли и образы из мозга. В отличие от них, программа NESD нацелена на создание нейроинтерфейсов высокого разрешения, которые позволят считывать и записывать данные чётко и точно с каждого из 1 млн отдельных нейронов.

Хотя задача считывать данные с 1 млн нейронов в отдельности выглядит фантастичной, но это количество представляет лишь крохотную долю от 86 млрд нейронов, из которых состоит мозг человека. Так что это лишь первый шаг к разгадке тайн человеческого мышления.

DARPA планирует выделить на исследования $65 млн в течение четырёх лет. В первый год разработчики сосредоточатся на концептуальных инновациях в области аппаратного и программного обеспечения, а также будут проводить опыты на животных и культивируемых клетках. На второй этапе начнутся базовые исследования, работа по миниатюризации компонентов и интеграции, а также сотрудничество с FDA по поводу регулирования новых технологий.

Разработчикам предстоит преодолеть ряд технических препятствий, но указанным шести группам удалось сформулировать свои планы и убедить DARPA, что их реально реализовать.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (2 votes)
Источник(и):

geektimes.ru