Немецкие физики улучшили квантовый гироскоп

Схематическое изображение принципа действия интерферометра. Схематическое изображение принципа действия интерферометра.

Группа исследователей из Германии предложила усовершенствованную конструкцию устройства для измерения вращения на основе облака холодных атомов. Предложенный инструмент имеет в два раза большую чувствительность, чем существовавшие ранее аналоги. Устройство представляет собой атомный интерферометр, который эксплуатирует волновую природу атомов для измерений, в частности, вращения Земли. Благодаря миниатюрным размерам в перспективе подобные интерферометры вполне могут использоваться в качестве чувствительных стабильных гироскопов в основе систем навигации кораблей и самолетов. Инструментарий также поможет выполнить более точные измерения силы тяжести и проверить положения теории относительности.

Исследователи уже довольно давно используют атомные интерферометры для точных измерений силы тяжести и вращения.

Усовершенствования этой технологии могут быть полезны для оценки скорости дрейфа континентов, сейсмических сдвигов, а также для уточнения данных навигационных систем, в частности, на основе GPS.

На данный момент наиболее точные измерения скорости вращения Земли обеспечивают большие аппараты, но интерферометры на холодных атомах в перспективе могут преобразиться в высокоточные портативные устройства.

Классический интерферометр использует световые волны.

К примеру, в интерферометре Маха-Цандера наполовину посеребренное зеркало («светоделитель») расщепляет импульс света, посылая лучи в разных направлениях.

Затем импульсы отражаются от зеркал, которые направляют их на второй светоделитель, где и фиксируется итоговый световой поток (иными словами, траектории двух лучей формируют ромб). Если один из лучей прошел немного большее расстояние из-за вращения установки, волны будут немного сдвинуты по фазе друг относительно друга, т.е. они частично компенсируются в точке встречи. Чувствительность такого интерферометра зависит от длины волны, таким образом, исследователям удается существенно повысить точность, используя атомы, чей квантовый характер определяется значительно более короткими волнами.

В одной из конструкций атомного интерферометра облако холодных атомов запускается по горизонтали и взаимодействует с серией из трех лазерных импульсов, когда проходит через исследуемую область.

Лазерные импульсы в данном случае играют роль светоделителя и зеркал. Первый импульс переводит атомы в комбинацию двух состояний: отклонения направо и налево относительно «нулевого» состояния. Второй импульс отклоняет оба облака обратно (навстречу друг другу), а третий обеспечивает подготовку облака к измерению числа атомов в возбужденном состоянии. В атомном интерферометре используется волна, представляющая собой осциллирующую вероятность атома находиться в возбужденном состоянии (а не осциллирующее электромагнитное поле, как в оптическом интерферометре).

Поскольку Земля вращается, одно из атомных облаков пройдет больший путь, нежели другое, что повлечет за собой изменение количества атомов в возбужденном состоянии.

Одним из основных источников ошибок ранее созданных атомных интерферометров было то, что атомные облака проходили довольно большие расстояния, находясь в возбужденном состоянии. Иными словами, на результат могли повлиять внешние силы (магнитные поля), создающие шум в измерениях.

Группе исследователей из Leibniz University of Hannover (Германия) удалось снизить уровень этого шума, изменив схему эксперимента таким образом, чтобы оба атомных облака большую часть времени находились в основном состоянии (не возбужденном), так что их не затрагивали внешние силы.

Для этого команда использовала несколько атомных импульсов в каждой из трех точек взаимодействия, что обеспечивало только короткие переходы между двумя состояниями.

Используя свою вариацию методики, исследователи измерили скорость вращения Земли с точностью около 1%. Основываясь на полученных данных, ученые говорят, что их метод в два раза чувствительнее, нежели существующие на сегодняшний день гироскопы на холодных атомах. Более того, они считают, что могут увеличить точность своего прибора, используя при этом конструкцию площадью в 40 кв. мм (что много меньше по сравнению с 16 кв. м, необходимыми сегодня для наиболее чувствительных гироскопов).

Подробные результаты работы опубликованы в журнале Physical Letters Review.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 4.9 (8 votes)
Источник(и):

1. physics.aps.org

2. sci-lib.com