Жидкостное дыхание

фото с сайта: http://divemir.com/wp-content/uploads/2010/11/TheAbyss_1.jpg фото с сайта: http://divemir.com/wp-content/uploads/2010/11/TheAbyss_1.jpg

Это уже, наверное, клише в научной фантастике: в костюм или капсулу очень быстро поступает некое вязкое вещество, и главный герой внезапно для себя обнаруживает, как быстро он теряет остатки воздуха из собственных лёгких, а его внутренности заполняются необычной жидкостью оттенка от лимфы до крови. В конце концов он даже паникует, но делает несколько инстинктивных глотков или, скорее, вздохов и с удивлением обнаруживает — он может дышать этой экзотической смесью так, словно он дышит обычным воздухом.

Так ли мы далеки от реализации идеи жидкостного дыхания? Возможно ли дышать жидкой смесью, и есть ли в этом реальная необходимость? Существует три перспективных пути использования этой технологии: это медицина, ныряние на большие глубины и космонавтика.

Давление на тело ныряльщика растёт с каждыми десятью метрами на одну атмосферу. Из-за резкого понижения давления может начаться кессонная болезнь, при проявлениях которой растворённые в крови газы начинают закипать пузырьками. Также при высоком давлении возможны кислородное и наркотическое азотное отравление. Со всем этим борются применением специальных дыхательных смесей, но и они не дают никаких гарантий, а лишь снижают вероятность неприятных последствий. Конечно, можно использовать водолазные скафандры, которые поддерживают давление на тело ныряльщика и его дыхательной смеси ровно в одну атмосферу, но они в свою очередь крупногабаритны, громоздки, затрудняют движение, а также очень дороги.

Жидкостное дыхание могло бы предоставить третье решение этой проблемы с сохранением мобильности эластичных гидрокомбинезонов и низких рисков жёстких скафандров. Дыхательная жидкость в отличие от дорогих дыхательных смесей не насыщает тело гелием или азотом, поэтому также отпадает необходимость в медленной декомпрессии для избежания кессонной болезни.

habrahabr-7.jpg

В медицине жидкостное дыхание можно использовать при лечении недоношенных детей, чтобы избежать повреждения недоразвитых бронхов лёгких давлением, объёмом и концентрацией кислорода воздуха аппаратов искусственной вентиляции лёгких. Подбирать и пробовать различные смеси для обеспечения выживания недоношенного плода начали уже в 90-х. Возможно использование жидкой смеси при полных остановках или частичных недостаточностях дыхания.

Космический полёт сопряжён с большими перегрузками, а жидкости распространяют давление равномерно. Если человека погрузить в жидкость, то при перегрузках давление будет идти на всё его тело, а не конкретные опоры (спинки кресла, ремни безопасности). Такой принцип использовался при создании костюма для перегрузок Libelle, который представляет из себя жёсткий скафандр, наполненный водой, что позволяет пилоту сохранять сознание и работоспособность даже при перегрузках выше 10 g.

Этот метод ограничен разницей плотностей тканей тела человека и используемой жидкостью для погружения, поэтому предел составляет 15—20 g. Но можно пойти дальше и заполнить лёгкие жидкостью, близкой по плотности к воде. Полностью погруженный в жидкость и дышащий жидкостью космонавт будет относительно слабо ощущать эффект экстремально высоких перегрузок, поскольку силы в жидкости распределяются равномерно во всех направлениях, но эффект всё равно будет из-за различной плотности тканей его тела. Предел всё равно останется, но он будет высок.

Первые эксперименты по жидкостному дыханию проводились в 60-х годах прошлого века на лабораторных мышах и крысах, которых заставили вдыхать солевой раствор с высоким содержанием растворённого кислорода. Эта примитивная смесь давала животным возможность выжить некоторое количество времени, но она не могла удалять углекислый газ, поэтому лёгким животных наносился непоправимый вред.

Позже начались работы с перфторуглеродами, и их первые результаты были куда лучше результатов экспериментов с соляным раствором. Перфторуглероды — это органические вещества, в которых все атомы водорода замещены на атомы фтора. Перфторуглеродные соединения обладают способностью растворять как кислород, так и углекислый газ, они очень инертны, бесцветны, прозрачны, не могут нанести повреждения ткани лёгких и не усваиваются организмом.

С того момента жидкости для дыхания были улучшены, самое совершенное на данный момент решение называется перфлуброн или «Ликвивент» (коммерческое название). Эта маслоподобная прозрачная жидкость с плотностью в два раза выше плотности воды обладает множеством полезных качеств: она может нести в два раза больше кислорода, чем обычный воздух, имеет низкую температуру кипения, поэтому после использования окончательное её удаление из лёгких производится испарением. Альвеолы под воздействием этой жидкости лучше открываются, и вещество получает доступ к их содержимому, это улучшает обмен газами.

Лёгкие могут заполняться жидкостью полностью, это потребует мембранного оксигенатора, нагревающего элемента и принудительной вентиляции. Но в клинической практике чаще всего так не делают, а используют жидкостное дыхание в комбинации с обычной газовой вентиляцией, заполняя лёгкие перфлуброном лишь частично, примерно на 40% от всего объёма.

habrahabr-bezdna.jpgКадр из фильма Бездна (The Abyss), 1989 год

Что же мешает нам использовать жидкостное дыхание? Жидкость для дыхания вязка и плохо выводит углекислый газ, поэтому понадобится принудительная вентиляция лёгких. Для удаления углекислого газа от обычного человека массой 70 килограммов потребуется поток 5 литров в минуту и выше, и это очень много с учётом высокой вязкости жидкостей. При физических нагрузках величина необходимого потока будет только расти, и вряд ли человек сможет двигать 10 литров жидкости в минуту. Наши лёгкие просто не созданы для дыхания жидкостью и сами прокачивать такие объёмы не в состоянии.

Использование положительных черт жидкости для дыхания в авиации и космонавтике тоже может навсегда остаться мечтой — жидкость в лёгких для костюма защиты от перегрузок должна обладать плотностью воды, а перфлуброн в два раза её тяжелей.

Да, наши лёгкие технически способны «дышать» определённой богатой кислородом смесью, но, к сожалению, пока мы можем это делать только на протяжении нескольких минут, поскольку наши лёгкие не настолько сильны, чтобы обеспечивать циркуляцию дыхательной смеси продолжительные периоды времени. Ситуация может измениться в будущем, остаётся лишь обратить наши надежды на исследователей в этой области.

По материалам zidbits.com и en.wikipedia.org.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 4.7 (10 votes)
Источник(и):

geektimes.ru