Эрозия ионных двигателей снижена в сотни раз

Длительной работе мощных и скоростных ионных двигателей препятствует быстрая эрозия стенок под действием разогнанных до больших скоростей ионов. Однако специалисты НАСА нашли способ радикального усмирения этого явления. Откроет ли это возможность дальних космических полётов?

Ионный двигатель (ИД) работает просто: газ из бака (ксенон, аргон и пр.) ионизируется и разгоняется электростатическим полем. Поскольку масса иона мала, а заряд он может получить значительный, ионы вылетают из двигателя со скоростями до 210 км/с. Химические двигатели могут достичь… нет, не чего-то подобного, а всего лишь в двадцать раз меньшей скорости истечения продуктов сгорания лишь в исключительных случаях. Соответственно, расход газа в сравнении с расходом химического топлива предельно мал.

Именно поэтому на ИД полностью или частично работали и работают такие «дальнобойные» зонды, как Hayabusa, Deep Space One и Dawn. И если вы собираетесь не просто по инерции лететь до далёких небесных тел, но и активно маневрировать близ них, то без таких двигателей не обойтись.

4-1_10.jpg Рис. 1. В 2014 году ионные двигатели справляют полувековой юбилей в космосе. Всё это время проблему эрозии не удавалось решить даже в первом приближении. (Здесь и ниже илл. NASA, Wikimedia Commons).

Как и всё хорошее, ИД любит, чтобы его питали: на один ньютон тяги нужно до 25 кВт энергии. Представим (вы уж простите нас за мечтательность!), что нам поручили запустить 100-тонный космический корабль к Плутону. В идеале даже для Юпитера нам потребуется 1 000 ньютонов тяги и 10 месяцев, а до Нептуна на той же тяге — полтора года. В общем, давайте про Плутоны всё-таки не будем, а то грустно как-то…

Ну а чтобы получить эти пока умозрительные 1 000 ньютонов, нам потребуется 25 мегаватт. В принципе, ничего технически невозможного: 100-тонный корабль мог бы принять атомный реактор. Кстати, в настоящее время НАСА и Министерство энергетики США работает над проектом Fission Surface Power. Правда, речь идёт о базах на Луне и Марсе, а не о кораблях. Но масса реактора не так уж высока — всего пять тонн при размерах в 3×3×7 м…

Ну ладно, помечтали — и хватит, скажете вы. И тут же вспомните частушку, якобы придуманную Львом Толстым во время Крымской войны. В конце концов, такой большой поток ионов, проходящий через двигатель (а это ключевое препятствие), вызовет его эрозию, и значительно быстрее, чем за десять месяцев или полтора года. Причём это не проблема выбора конструкционного материала (благо разрушаться в таких условиях будут и титан, и алмаз), а неотъемлемая часть конструкции ионного двигателя per se.

Так вот, исследователи из Лаборатории реактивного движения НАСА считают, что как минимум частично покончили с этой проблемой.

При большой тяге ионы в двигателе врезаются в анод, что ведёт к анодному разбрызгиванию. Чем выше тяга двигателя и скорость ионов, тем быстрее, следовательно, будет эродировать анод.

4-2_9.jpg Рис. 2. Стенки из нитрида бора — самое уязвимое место ионного двигателя, однако магнитное поле смогло повысить их предельный ресурс в 500–1 000 раз.

Они попробовали изолировать стенки анода (на базе нитрида бора) от положительных ионов магнитным полем. А линии такого магнитного поля были параллельны поверхности стенок, и по ним заряженные частицы уносились прочь, не трогая стенок. Решение, при всей его очевидности, оказалось довольно эффективным: скорость эрозии упала в 500–1 000 раз. Испытания проводились на ИД, основанном на эффекте Холла и имеющем мощность в 6 кВт (условно-досрочно ~ четверть ньютона).

Разумеется, это не конец всех проблем. При дальнейшем масштабировании ИД энергия ионов может оказаться такой, что либо на защитное магнитное поле не хватит располагаемой электрической мощности, либо даже при её наличии обеспечить защиту от ионов полностью не получится. И всё же это решительный шаг вперёд: такое замедление эрозии делает принципиально возможной отправку даже весьма тяжёлого корабля к относительно удалённым объектам Солнечной системы.

Отчёт об исследовании опубликован в журнале Applied Physics Letters.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 4.7 (13 votes)
Источник(и):

1. gizmag.com

2. compulenta.ru