Ученые ФИАНа предложили модель перемешивания оболочек лазерных термоядерных мишеней

Эффективную модель, описывающую перемешивание веществ в процессе сжатия мишеней лазерного термоядерного синтеза, разработали ученые из Физического института им. П.Н. Лебедева РАН и Института математического моделирования РАН. Предложенная модель помогает ответить на важный для «термояда» вопрос о влиянии начальных условий на динамику процесса перемешивания.

В лазерном термоядерном синтезе мощные пучки лазера облучают мишень – шарик диаметром в несколько миллиметров, который состоит из дейтерий-тритиевого ядра и оболочки из других веществ. В результате сжатия и нагрева мишени в DT-смеси создаются условия, при которых происходят реакции слияния дейтерия и трития, образуются ядра гелия (альфа-частицы) и нейтроны, выделяется большое количество энергии, порядка 18 МэВ за одну реакцию, – происходит ядерный микровзрыв. При лазерном облучении и сжатии мишени, которое происходит в результате испарения и разлета оболочки, между ядром и оболочкой возникает неустойчивость, происходит взаимное проникновение легкого и тяжелого вещества. Появляющаяся неоднородность приводит к снижению температуры топлива и плотностей сжимаемых веществ, нарушая симметричность сжатия мишени, что в итоге снижает эффективность реакции.

Неустойчивости можно было бы избежать, сжимая мишень максимально симметрично, однако для этого понадобилось бы бесконечное число лазеров, что, естественно, невозможно. Хотя изучать эту задачу учёные начали ещё полвека назад, когда лазерный термоядерный синтез только возник (использовать лазеры для проведения ядерных реакций предложили в ФИАНе в 1961 году Н.Г. Басов и О.Н. Крохин), неустойчивости до сих пор остаются одной из ключевых проблем в этом направлении физики. Специалисты продолжают исследовать неустойчивости, пытаясь понять, отчего они возникают, как растёт зона перемешивания тяжёлого и лёгкого вещества, какие при этом возникают возмущения и как бороться с таким явлением. Модель, предложенная учеными из ФИАНа (под руководством главного научного сотрудника Сектора теории лазерной плазмы доктора физико-математических наук В.Б. Розанова) и Института математического моделирования РАН, стала ещё одним шагом в изучении этой проблемы.

Главным итогом работы стал ответ на вопрос, как начальные возмущения, определяемые как симметрией и однородностью источника энергии, так и качеством изготовления самой капсулы, влияют на степень сжатия и нейтронный выход реакции.

Для построения модели учёные провели множество численных одномерных (1D) и двумерных (2D) расчётов развития неустойчивостей для «плоской» и сферической геометрии. Результаты этих расчётов содержат подробную информацию о состоянии веществ, размерах области перемешивания и других показателях. Затем на их основе, а также с учетом существующих теоретических моделей описания турбулентного слоя в процессе перемешивания двух разноплотных веществ была разработана теоретическая модель для описания ширины и скорости роста зоны турбулентного перемешивания для широкого диапазона начальных условий.

Тем временем, физики рассчитывают повысить эффективность термоядерных реакций за счёт новых сверхмощных лазеров. Рассказывает участник работы, младший научный сотрудник ФИАН, кандидат физико-математических наук Рафаэль Яхин:

«Преимущества лазерного излучения для инициирования термоядерных реакций заключаются в относительной легкости его транспортировки к мишени и его фокусировки, возможности получать высокие плотности мощности, требуемые для эффективного сжатия мишени. В ведущих лабораториях мира существуют и проектируются несколько мощных лазерных установок для облучения мишеней. Крупнейшая из них на сегодняшний день National Ignition Facility (NIF) находится в Ливерморе, США. Она представляет собой систему из 192 лазеров на неодимовом стекле с суммарной энергией всех импульсов 1,8 МДж и длительностью несколько наносекунд, способных фокусироваться в пятно размером несколько миллиметров. По сообщениям из прессы в Сарове в ближайшие годы планируется создать близкую по своим параметрам к лазеру NIF установку».

finf_news1401.jpg Рис. 1. Внутри установки NIF. Справа – держатель мишени. (иллюстрация взята с официального сайта проекта – https://lasers.llnl.gov/).

Ещё одно явление, в котором имеет место развитие гидродинамических неустойчивостей, – взрыв и разлёт сверхновых звёзд. Рафаэль Яхин:

«В настоящий момент я занимаюсь исследованием эволюции сверхновых звезд при взрыве. На основе численных кодов проводятся 1D и 2D гидродинамические расчеты, моделирующие динамику процессов разлета остатков сверхновой с массой порядка 15 масс Солнца в течение нескольких сотен секунд после момента взрыва. С учетом критериев гидродинамического подобия рассматриваются возможные лазерные мишени-имитаторы сверхновых, которые позволят в лаборатории воспроизвести физические процессы, имеющие место при взрыве астрофизического объекта, такие как распространение ударной волны по веществу, развитие гидродинамических неустойчивостей на границах разноплотных оболочек, формирование остаточного облика на месте взрыва сверхновой и др.».

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (7 votes)
Источник(и):

1. АНИ ФИАН-Информ