Лазеры для электродных микросхем

Для развития гибкой электроники и оптоэлектроники требуется дешевый и удобный способ изготовления электропроводящих схем на полимерных подложках. Существующие методы слишком дороги, однако сегодня ученые предложили способ, удешевляющий технологию в 100 раз, одновременно повышая разрешение при печати микросхем.

Для развития гибкой электроники и оптоэлектроники требуется дешевый и удобный способ изготовления электропроводящих схем на полимерных подложках.

Хотя исследователи уже предложили несколько производственных процессов с использованием чернил на основе металлических наночастиц, основанных на струйной печати, эти методы слишком дороги из-за высокой стоимости наночастиц для чернил – чернила на основе 5-тинанометровых наночастиц серебра стоят около 30000$/кг. Кроме того, есть и несколько других ограничений, в том числе низкое разрешение, неоднородное покрытие и низкое качество поверхности по сравнению с вакуумным напылением электродов.

12_0.jpg Рис. 1. а) Схема метода нанесения микросхем: нанесение чернил из раствора, отжиг с образованием наночастиц и лазерное лечение с образованием непрерывного проводящего массива. b) Схема эксперимента.

Б. Кан, С. Ко, Дж. Ким и М. Ян из Корейского института науки и технологий в городе Тэджон, Южная Корея, сообщают о технике изготовления микроэлектродов, в которой используются металлоорганические чернила стоимостью всего 300$/кг, которые в то же время дают более высокое качество микросхем, чем в случае предложенных ранее.

Металлоорганические чернила прозрачны и изначально не содержат металлических наночастиц. Это делает их несовместимыми с процессом лазерного лечения, при котором энергия падающего лазерного излучения поглощается и расплавляет металлические наночастицы, формируя непрерывный их массив. Исследователи смогли обойти эту проблему, нанося краски методом спин-коатинг на подложку, такую как стекло, а затем отжигают при температуре ниже температуры спекания краски. Точный контроль кратковременного предотжига приводит к неполному термическому разложению с образованием 2–3 нм наночастиц серебра.

124.jpg Рис. 2. а) фотография в оптический микроскоп и b) фотография пленки с нанесенной микросхемой. с) тест на адгезию микросхемы с рис. 2b).

Наличие наночастиц в отожженных чернилах позволяет в дальнейшем уже методом лазерного лечения сформировать высококачественные схемы. Сканирование сфокусированного на образце лазерного пучка волоконного лазера, легированного Yb, с длиной волны 1070 нм, приводило к агломерации отдельных наночастиц серебра в непрерывный массив. Затем отмывкой областей, на которые не воздействовало лазерное излучение, ученые получали желаемую электродную микросхему.

Исследователи утверждают, что шероховатость поверхности и структура профилей оказались не хуже, чем при вакуумном осаждении, и гораздо лучше, чем при обычном нанесении из чернил с металлическими наночастицами.

Результаты исследований опубликованы в статье:

Bongchul Kang, Seunghwan Ko, Jongsu Kim, and Minyang Yang Microelectrode fabrication by laser direct curing of tiny nanoparticle self-generated from organometallic ink. – Optics Express, Vol. 19, Issue 3, pp. 2573–2579 (2011).

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (7 votes)
Источник(и):

1. nanometer.ru