Как экспериментально проверить теорию струн?

В Физическом институте им. П.Н. Лебедева РАН завершён цикл исследований в области теории струн. Полученные результаты являются составной частью исследований, призванных помочь как в решении изначальной задачи теории – изучении сильного взаимодействия в нашем четырёхмерном пространстве, и, в частности, выяснении причины того, почему кварки «не любят одиночества», так и в экспериментальной проверке самой теории.

Теория струн возникла в конце 1960-х годов и за последующие десятилетия стала одним из основных претендентов на роль объединённой теории мироздания – «теории всего сущего».

Считается, что она сможет объяснить основы строения Вселенной или, как минимум, свойства фундаментальных частиц и их взаимодействия.

Одним из впечатляющих достижений теории струн является то, что эта теория объединила прежде непримиримые принципы общей теории относительности (гравитации) и квантовой механики.

Сторонники этой теории рассматривают в качестве основополагающих элементарных объектов не «привычные» нам точечные электроны или кварки, а одномерно-протяжённые колеблющиеся объекты, которые напомнили учёным струны и подарили название теории. Впрочем, экспериментально удостовериться в существовании струн пока невозможно:

требуемая точность на много порядков выше сегодняшних технических возможностей. Это представляет серьёзную проблему для теории с точки зрения её доказуемости, но физики-теоретики не сдаются и продолжают активно исследовать проблему.

Новую страницу в истории теории струн открыла гипотеза, выдвинутая в 1997 году американским учёным Хуаном Малдасеной. Названная в его честь гипотеза дуальности впервые предлагала двоякое описание одних и тех же процессов – в терминах струн с одной и теории полей Янга-Миллса с другой стороны.

Говоря упрощённо, гипотеза позволила, рассматривая теорию струн в рамках хорошо изученной теории возмущений в 10-мерном пространстве, делать предсказания для режима сильной связи адронов в 4-мерном пространстве.

В частности, Малдасена предположил, что теория струн «живёт» в специальном десятимерном пространстве, которое является прямым произведением двух пятимерных пространств – 5-мерной сферы и специального искривлённого 5-мерного пространства анти-де Ситтера (AdS). У последнего, названного в честь Виллема де Ситтера, есть четырёхмерная граница, которая и является нашим миром.

Согласно идее Малдасены, режим сильной связи в нашем 4-мерном пространстве можно соотнести с режимом слабой связи в пространстве анти-де Ситтера – делая вычисления в соответствии с теорией возмущения в теории струн, можно сделать предсказания для режима сильной связи на границе пространства анти-де Ситтера, то есть для нашего четырёхмерного пространства.

В частности, такой подход открывает новые интересные возможности для изучения взаимодействия кварков – описание взаимодействий, удерживающих кварки вместе, до сих пор не ясно.

Основным методом изучения гипотезы Малдасены является вычисление так называемого «эффективного действия» для полей в пространстве AdS. Эффективное действие позволяет определить корреляционные функции токов в нашем 4-мерном пространстве и, в принципе, проверить гипотезу Малдасены. Последние несколько лет Руслан Мецаев занимался проблемой вычисления эффективного действия.

Руслан Мецаев:

«В нашем мире есть поля, которые представлены нейтронами, электронами, фотонами. Эти поля характеризуются, помимо прочего, спином и массой. В пространстве AdS тоже существуют поля, которые также характеризуются массой и спином, там также можно ввести эти понятия. Так вот в теории струн значения спина могут быть любыми, в том числе – дискретными, то есть целыми или полуцелыми, любыми. И для этих полей я занимаюсь вычислением эффективного действия. Эффективное действие дает некие предсказания для теории на границе, а точнее, позволяет сделать предсказания для корреляционных функций токов, которые можно пытаться проверить в эксперименте».

finf_news1323.gif Рис. 1. ADS пространство в изображении художника Морица Эшера. Картинка показывает координатные, а не физические расстояния, то есть на самом деле все рыбы одинаковы в размере (иллюстрация взята из презентации Х. Малдасены).

В выражениях для корреляционных функций есть такой параметр, как конформная размерность – Δ. Её и важно было найти: впоследствии этот показатель может быть проверен экспериментально. Он зависит от массы и спина частиц в AdS, и раньше исследователи, используя метод эффективного действия, вычислили Δ и соответствующую корреляционную функцию только для частного случая, когда масса равна нулю, а спин – единице или двойке.

Мецаев, с помощью разработанного им подхода, вычислил эффективное действие для массивных полей произвольного спина и тем самым нашёл величину Δ для любых значений массы и спина. Опубликованная им работа завершила цикл из четырёх статей, начатый в 2008 году и посвящённый изучению полей в 5-мерном пространстве AdS и соответствующих им токов в 4-мерном пространстве.

Ближайшее продолжение работы: упрощение метода вычисления эффективного действия, исследование физических систем, для которых предсказания теории струн могут быть экспериментально проверены.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 4.3 (16 votes)
Источник(и):

1. АНИ ФИАН Информ