Физики рассмотрели атомы в белке при помощи рентгеновского лазера

Международный коллектив физиков приспособил самый мощный рентгеновский лазер в мире из лаборатории SLAC для изучения структуры сложных биологических молекул с атомным разрешением и представил новую методику рентгеновской кристаллографии в статье, опубликованной в журнале Science.

«Нам удалось визуализировать молекулу со столь высоким разрешением, что мы смогли рассмотреть отдельные атомы и определить их положение в белковой цепочке. Более того, структура просвеченного белка лизоцима совпала с его химической моделью, несмотря на то, что образец был уничтожен во время "залпа» лазера. Это первая экспериментальная демонстрация подобного эффекта", – пояснил руководитель группы ученых Себастиан Буте (Sebastien Boutet) из Национальной ускорительной лаборатории SLAC в городе Менло Парк (США).

Буте и его коллеги экспериментировали со сверхмощными и сверхкороткими импульсами рентгеновского лазера, пытаясь улучшить методику рентгеновской кристаллографии и сделать ее более пригодной для изучения органических молекул.

В феврале 2011 года исследователи опубликовали промежуточные результаты работы в журнале Nature. В этой статье Буте и его коллеги показали, что их методика позволяет изучать пространственную структуру вирусных частиц и крупных молекул белков, но не с атомной точностью.

Как отмечают исследователи, пространственную структуру сложных биологических молекул или вирусов обычно исследуют методом рентгеновской кристаллографии. Этот метод требует получения высококачественных кристаллов, которые к тому же могут разрушаться под действием излучения. Кроме того, кристаллы абсолютно свободные от дефектов, как правило, вырастить не удается.

Чтобы избавиться от этих недостатков, ученые решили использовать другой инструмент – чрезвычайно мощные и сверхкороткие по длительности импульсы рентгеновского излучения.

Для фиксации этих импульсов авторы статьи разработали специальную светочувствительную матрицу CSPAD, способную ловить вспышки длительностью в 5 фемтосекунд (1 фемтосекунда равна 10 в –16 степени секунды). Она стала основой для молекулярной камеры, способной просветить даже самые неудобные и непрочные молекулы белков.

Эта камера состоит из матрицы CSPAD, специальной фокусирующей линзы, источника белковых кристаллов и сверхмощного рентгеновского лазера LCLS (Linac Coherent Light Source). Во время работы устройства сверхкороткий импульс лазера длительностью в несколько фемтосекунд «прошивает» образцы белковых молекул. При столкновении с молекулой белка пучок рентгеновского излучения разрушает ее, но при этом сохраняет информацию о ее устройстве и переносит ее на матрицу молекулярной камеры.

Физики проверили работу своего изобретения – они просветили при его помощи кристаллы белка лизоцима и сравнили полученные изображения с известной структурой этого соединения. Эксперимент закончился удачно – ученые смогли не только увидеть трехмерную форму молекулы белка, но и отдельные атомы в его составе.

В отличие от других методик кристаллографии, молекулярная камера Буте и его коллег способна фотографировать даже очень небольшие кристаллы белков, что позволяет применять ее для анализа микроскопических и нестабильных цепочек аминокислот. Это позволяет применять данный прием для изучения тонких клеточных мембран и других неизученных молекул.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (11 votes)
Источник(и):

1. РИА Новости