«Умные» и стабильные наночастицы золота

Наночастицы золота из-за их уникальных физических и химических свойств вызывают большой интерес у исследователей. Главная проблема успешной работы с ними заключается в том, что наночастицы весьма неустойчивы и стремятся к агрегации, что приводит к потере свойств материала, связанных с наноразмерным эффектом. Используя в качестве стабилизирующего агента полимеры, можно не только поддержать стабильность наночастиц, но и создать новый материал, свойства которого будут взаимодополняться его компонентами.

В работе, опубликованной в Journal of Materials Chemistry, получали коллоидные наночастицы золота, стабилизированные модифицированным декстраном (DexPNI). Подобные структуры очень привлекательны, благодаря возможности обратимого изменения их свойств в зависимости от температуры или уровня рН.

Декстран – природный полисахарид, часто используемый в биомедицинских приложениях, благодаря его биосовместимости и способности к биологическому разложению. Другим его значительным свойством является сильно разветвленная структура, что может обеспечить большую стабилизацию наноматериалов, чем другие связывающие лиганды. Для придания полимеру обратимых свойств макромолекулы декстрана модифицировали полиметил-н-изопропилакриламидом. Полиметил-н-изопропилакриламид является одним из самых популярных «умных» полимеров и интенсивно используется как ключевой материал для получения «умных» материалов. В качестве источника золота использовали HAuCl4, а в качестве восстановителя – NaBH4. Образующиеся наночастицы связываются с DexPNI за счет взаимодействия с тиольными группами (рисунок 1).

risa1_0.jpg Рис. 1. Одностадийное получение стабилизированных наночастиц золота.

За счет того, что наночастицы окружены макромолекулами DexPNI, они демонстрируют длительную стабильность при нагревании, высокой концентрации соли и большом диапазоне рН (рисунок 2). Кроме того, когда температура выше 350 С, прекращается каталитическое действие наночастиц золота. Такие материалы могут найти применение в качестве «умных» сенсоров и катализаторов.

risa2.jpg Рис. 2. Демонстрация стабильности наночастиц золота при различных уровнях рН, в присутствии соли (NaCl), при нагревании и при повторном растворении после криосушки.

Морфология наночастиц и их оптические спектры поглощения сильно зависят от концентрации HAuC4. Чем больше концентрация прекурсора, тем больше наночастицы и тем разнообразнее их форма (рисунок 3).

risa3.jpg Рис. 3. а-с) Изображения просвечивающей электронной микроскопии наночастиц, полученных при добавлении разных количеств прекурсора. d-f) Оптические спектры поглощения при различных температурах. На вставках – фотографии растворов.

Каталитические свойства наночастиц золота исследовались на примере восстановления 4-нитрофенола до 4-аминофенола при различных температурах. Это довольно удобно, потому что на спектрах поглощения можно отчетливо видеть полосы поглощения нитрофенола (400 нм) и аминофенола (290 нм). В отсутствие золота процесс восстановления не идет. Реакции восстановления проводили при различных температурах и определяли кинетику процесса (рисунок 4). Чем выше температура, тем быстрее идет восстановление. Выше 350oС золотые наночастицы перестают действовать как катализатор, потому что выше этой температуры происходит дегидратация цепочек полиметил-н-изопропилакриламида и как следствие сшивание DexPNI. За счет этого наночастицы экранируются и доступ реактанта прекращается.

risa4.jpg Рис. 4. а) Эволюция спектров поглощения для 4-нитрофенола в присутсвии наночастиц золота при 200oС. b) Зависимость концентрации 4-нитрофенола от времени восстановления при различных температурах.

Таким образом, полученные исследователями наночастицы не только очень стабильны, но и могут действовать как «умный» катализатор, останавливая реакцию, когда температура системы поднимается выше критического значения (в данном случае выше 350oС).

Результаты исследований опубликованы в статье:

Weipeng Lv, Yang Wang, Wenqian Feng, Junjie Qi, Guoliang Zhang, Fengbao Zhang and Xiaobin Fan Robust and smart gold nanoparticles: one-step synthesis, tunable optical property, and switchable catalytic activity. – J. Mater. Chem. – 2011. – DOI: 10.1039/C0JM04180G.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (9 votes)
Источник(и):

1. nanometer.ru