Сверхмощные наномагниты решат проблему редких элементов

Хлопья наночастиц неодим-железо-бор (фото Nanotechnology/IOP).

Целое может быть больше, чем сумма его частей. Это странное правило нередко всплывает, когда учёные экспериментируют с веществом на микро- и наноуровне. И не важно, о химических или физических свойствах образцов идёт речь. На этом же принципе, говорят исследователи, в лабораториях уже работают магниты будущего.

Редкоземельные элементы используются в широком спектре отраслей — от приборостроения до химической промышленности. В технике такие вещества служат основой сильных и лёгких магнитов, в свою очередь, необходимых для построения мощных и компактных электромоторов.

Некоторые эксперты обеспокоены будущим данной индустрии из-за того, что потребление редкоземельных металлов растёт, и в то же время есть опасение, что Китай, добывающий львиную долю этих элементов (96–97%), сократит экспорт. К примеру, по оценке министерства энергетики США (DOE), мировой спрос на неодим, ключевой ингредиент мощных постоянных магнитов, превысит предложение в 2015–2020 годах, — информирует Technology Review.

Выход из положения нашли физики из исследовательского отделения GE Global Research, а также межинститутская группа учёных, возглавляемая физиками из университета Делавэра (University of Delaware). Ранее экспериментаторы пытались усилить магниты на основе неодима, подбирая новые рецепты сплавов и режимы кристаллизации. Но, по мнению Фрэнка Джонсона (Frank Johnson), возглавляющего исследовательскую программу по магнитам в GE, в будущем этот подход перестанет давать плоды.

А ведь это не значит, что из постоянных магнитов уже выжато всё, что можно. Просто настало время подойти к решению задачи с иной стороны.

«Теперь наша надежда – нанокомпозиты», — объясняет Джордж Хаджипанайис (George Hadjipanayis) из университета Делавэра.

Такие материалы могут состоять, к примеру, из двух и более типов наночастиц — на базе неодима и на основе железа (или кобальта), чередующихся на микроуровне. Испытывая так называемое обменное взаимодействие, они придают композиту более сильные магнитные свойства, чем обеспечивали бы те же самые элементы в обычном сплаве.

quo.jpg Рис. 1. Магниты нового поколения экспериментаторы собирают при содействии поверхностно-активных веществ из частиц с высокими намагниченностю и коэрцитивностью (иллюстрация с сайта udel.edu).

Общий эффект оказывается мощнее, чем простая сумма частей. А это означает, что нанокомпозитные магниты будут сильнее при меньшем весе, а главное – они будут содержать меньше тех самых редкоземельных элементов.

qup.jpg Рис. 2. В начале 1980-х Хаджипанайис был
одним из учёных, которые открыли
высокие магнитные свойства состава
неодим-железо-бор. Теперь Джордж
намерен запустить новый виток
индустрии мощных постоянных
магнитов (фото с сайта udel.edu).

В прошлом году на развитие этой интересной программы американское министерство энергетики выделило около $2,25 миллиона компании GE и примерно $4,5 миллиона – «магнитной» группе Хаджипанайиса.

Учёные уже умеют создавать магнитные «наноконструкторы», правда, в виде тонких плёнкок. Сейчас исследователи ломают головы над следующим шагом – масштабированием технологии, необходимой для производства крупных магнитов. Здесь ещё есть ряд нерешённых вопросов, скажем, обеспечение плотной упаковки частиц в объёме так, чтобы они наиболее эффективно взаимодействовали друг с другом.

Готовые чудо-составы GE намерена представить в течение ближайшей пары лет, специалисты из Делавэра тоже постараются не отставать.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (11 votes)
Источник(и):

1. membrana.ru