Магнитные липосомы для управляемой доставки лекарств

Липосомы.

Исследователи из Швейцарии и Австрии предложили липосомы, в которых 5 нм суперпарамагнитные наночастицы оксида железа встроены непосредственно в липидную оболочку. Как оказалось, такие липосомы не агрегируют и позволяют контролируемо выделять доставляемые вещества под действием переменного магнитного поля.

Липосомы – искусственные везикулы из липидных бислоёв – в настоящее время успешно применяются для доставки различных лекарственных препаратов. Обычно их диаметр составляет около 100 нм, они биосовместимы, а главной их особенностью является то, что они могут проникать через гидрофобные липидные оболочки, например, клеточные мембраны. Таким образом, полезный груз, даже будучи гидрофильным, может запросто попасть внутрь клеток.

1-1.jpg Рис. 1. Под действием переменного магнитного поля мембрана липосомы становится проницаемой для доставляемого вещества.

Высвобождение препарата происходит при разрушении липосом, например, под действием температуры, которая обычно близка к температуре тела. Такой подход не очень удобен, т.к. липосомы начинают разрушаться сразу после введения в организм, не дойдя до желаемого места, поэтому ученые стараются придумать различные ухищрения, чтобы иметь возможность инициировать высвобождение груза по требованию. Например, можно внедрить в липосомы плазмонные наночастицы золота, которые будут нагреваться под действием света и приводить к разрушению липосом, однако в этом случае естественным ограничением является прозрачность тканей. Более интересным способом является внедрение в липосомы суперпарамагнитных наночастиц оксида железа, которые способны нагреваться под действием переменного магнитного поля, но такие липосомы, как правило, склонны к агрегации и оказываются нестабильны в коллоидном состоянии.

Исследователи из Швейцарии и Австрии предложили липосомы, в которых 5 нм суперпарамагнитные наночастицы оксида железа встроены непосредственно в липидную оболочку. Как оказалось, такие липосомы не агрегируют и позволяют контролируемо выделять доставляемые вещества под действием переменного магнитного поля.

3_1.jpg Рис. 2. Липосомы. На врезке отчётливо
видны магнитные наночки.

Способность липосом высвобождать груз была испытана на флуоресцентном красителе флуорексоне. Ученые определили, что липосомы с суперпарамагнитными наночастицами в мембране работают существенно эффективнее тех, которые содержат их внутри полости. Также оказалось, что новые липосомы не разрушаются. По-видимому, в переменном магнитном поле нагрев мембраны происходит локально вокруг магнитных наночастиц, что повышает ее проницаемость, но не приводит к плавлению. Таким образом, выделение доставляемого вещества можно не только управляемо включать, но и выключать, т.е. контролировать дозу и продолжительность терапии. Кроме того, локальный нагрев мембраны не должен приводить к термическому разрушению доставляемого вещества и к смерти клеток. Еще одним полезным свойством магнитных липосом является возможность их перемещения под действием магнитных полей и визуализации при помощи МРТ.

4_0.jpg Рис. 3. Высвобождение флуоресцентного красителя. Видно, что липосомы с магнитными частицами в мембране работают лучше.

Результаты исследований авторов опубликованы в статье:

Esther Amstad, Joachim Kohlbrecher, Elisabeth Mller, Thomas Schweizer, Marcus Textor and Erik Reimhult Triggered Release from Liposomes through Magnetic Actuation of Iron Oxide Nanoparticle Containing Membranes. – Nano Lett. – Publication Date (Web): February 25, 2011.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (4 votes)
Источник(и):

1. .nanometer.ru