NanoPen - новый метод нанолитографии

-->

К настоящему времени создано и освоено множество различных методов нанолитографии: dip-pen нанолитография, контактная микропечать, самосборка и другие. Однако основным недостатком всех вышеперечисленных методов является невозможность или сложность динамического нанесения наноструктур.

Image-071.jpg Рисунок 1. На рисунке представлена схема
устройства, предложенного авторами статьи.

Свой метод нанесения наноструктур в режиме реального времения предложил коллектив ученых из калифорнийского университета Беркли, назвав его NanoPen. Предложенное ими устройство состоит из двух катодов, изготовленных из ITO, с заключенным между ними жидкостным слоем, содержащим наносимые наночастицы, к которым приложено (переменное) напряжение. На нижний электрод нанесен слой гидрогенизированного аморфного кремния (рис.1). Принцип работы данного устройства следующий: пучок подаваемого излучения создает пару электрон-дырка в слое аморфного кремния, что приводит к локальному возрастанию проводимости. Это приводит к образованию неоднородного поля в жидкостном слое, которое, в свою очередь, взаимодействует с наночастицами , втягивая или выталкивая их из области с повышенной напряженностью электрического поля. Это так называемая диэлектрофоретическая сила (DEP).

Image-072.jpg Рисунок 2. На рисунке представлены две
основных силы: первая собирают наночастицы,
вторая наносит их на слой кремния.

Кроме этой силы, существует еще две силы, которые определяют процессы, протекающие в данном устройстве: индуцированная излучением переменнотоковая электроосмотическая сила (LACE) и электротермальная сила (ET). Первая сила возникает благодаря взаимодействию перпендикулярной составляющей вектора электрического поля с вектором электрического поля, создаваемого двойным электрическим слоем на поверхности кремниевого слоя. Часть энергии фотонов падающего излучения при поглощении слоем кремния переходит в тепловую энергию, тем самым создавая градиент диэлектрической проницаемости и проводимости в жидкостном слое. Возникающая диэлектрофоретическая сила создает вихревые потоки (называемые электротермальными потоками) в облучаемом регионе. В результате можно выделить две силы: первая сила собирает частицы на значительном удалении вместе (LACE+ET), а вторая сила наносит их на поверхность кремниевого слоя (в основном DEP) (рис.2).

На рисунке 3 продемонстрировано динамическое нанесение наночастиц золота диаметром 90 нм. Наночастицы золота движутся вслед за движущимся пучком излучения, оставляя след. Варьируя параметры источника питания, интенсивность и площадь поперечного сечения пучка излучения, а также меняя время нанесения, можно варьировать размер и плотность наносимых наноструктур (рис.4). По утверждению исследователей, подобным образом можно наносить не только отдельные наночастицы, но и одномерные наноструктуры, в частности нанотрубки, диэлектрические и металлические провода.

Отличительной чертой описанного выше метода является возможность применения маломощного источника излучения. В подтверждение своих слов авторы нанесли логотипы из наночастиц золота, используя обыкновенный проектор (рис.5).

Image-073.jpg Image-074.jpg Image-075.jpg

Рисунок 3 (слева) На фотографии отчетливо виден след, оставляемый наночастицами золота. Рисунок 4 (в центре) На фотографии видно, что толщина наносимого «рисунка» зависит от времени нанесения. Рисунок 5 (справа) На фотографии представлены логотипы, нанесенные с использованием проектора.

Опубликовано в NanoWeek,


Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 4.2 (5 votes)
Источник(и):

http://www.nanometer.ru/…_156333.html