Nano: Самое интересное

Ученые из Кембриджского Университета создали микромеханическое фононное устройство — вибрационный эквивалент оптической частотной гребенки, которая произвела революцию в области высокоточных измерений в начале 2000-х годов. Описание эксперимента опубликовано в журнале Physical Review Letters.

Американским ученым удалось доставить молекулы РНК в слизистую оболочку кишечника живых мышей с помощью ультразвука. Результаты работы опубликованы в журнале Gastroenterology.

Исследователи из Лаборатории нанооптики и плазмоники Центра наноразмерной оптоэлектроники МФТИ создали теорию, позволяющую точно предсказывать шумы, возникающие при усилении фотонных и плазмонных сигналов в наноразмерных схемах.

При всех своих достоинствах жидкокристаллические экраны обладают и рядом недостатков, связанных с высокой стоимостью светофильтров, ограничениями по яркости и контрастности, а также сложностью утилизации. Группа ученых из Германии и Испании намеревается сделать дисплеи дешевле и экологичнее за счет использования 3D-печатной подсветки на основе люминесцентных белков.

Несмотря на обладание множеством привлекательных уникальных механических и электрических свойств, углеродные нанотрубки, за редкими исключениями, пока остаются лишь предметом научных исследований, с которым работают ученые в стенах своих лабораторий. Такая ситуация складывается из-за того, что до последнего времени не существовало технологии производства высококачественных углеродных нанотрубок таких размеров, которые обеспечат удобство их практического использования, размеры нанотрубок, выращиваемых стандартным методом осаждения из паровой фазы, составляют всего от 5 до 20 микрометров в длину. Однако, в скором будущем все изменится в этой области, и первым шагом к тому является технология массового производства сверхдлинных углеродных нанотрубок, разработанная специалистами компании Nanocomp Technologies Inc. Выходящие из специализированного реактора нанотрубки могут иметь длину в пределах от 1 до 10 миллиметров, и такая длина уже позволит использовать их во множестве самых различных областей.

Если вы когда-нибудь стояли рядом с пролетающим сверхзвуковым самолётом, то наверняка запомнили оглушающий звук ударной волны, которым сопровождается движение тела на скорости более 1 Маха, то есть больше скорости звука в данной среде. Область распространения ударной волны от сверхзвукового самолёта ограничена конусом Маха. Группе учёных из Иллинойсского университета в Урбане-Шампейне (США) и научно-исследовательского Университета Цинхуа (Китай) удалось впервые запечатлеть на видеокамеру «ударную волну» из фотонов. Как и звук, фотоны света имеют волновую природу, поэтому образуют такой же конус Маха, если тело движется быстрее, чем скорость света в окружающей среде.

Сотрудники МГТУ имени Н.Э. Баумана совместно с ИФТТ РАН разработали и изготовили терагерцовые фотонно-кристаллические волноводы на основе кристаллов сапфира. Исследование поддержано грантом Российского научного фонда (РНФ), результаты опубликованы в журнале IEEE Transactions on Terahertz Science and Technology.

Химики из МГУ имени М.В. Ломоносова и Института органической химии им. Н.Д. Зелинского РАН проанализировали процесс роста нанотрубок из оксида титана в разных условиях и нашли интересную закономерность. Результаты исследования ученых были опубликованы в журнале Electrochemistry Communications.

С помощью другого сверхпроводника химикам удалось активировать сверхпроводящие свойства графена. Исследование опубликовано в журнале Nature Communications.

Сотрудники Международного учебно-научного лазерного центра (МЛЦ) МГУ имени М.В. Ломоносова выяснили, что скорость распространяющегося импульса в метаматериале, обладающем нелинейностью, зависит от интенсивности света, который на него падает. О своем исследовании ученые написали в статье, опубликованной в журнале Optics Communications.

В Германии завершен один из этапов ввода в эксплуатацию линейного ускорителя крупнейшего научного проекта European XFEL (European Х-ray Free Electron Laser). Более чем 1,5-километровый линейный ускоритель XFEL охладили до температуры 2 кельвина. Об этом сообщается на сайте проекта.

Многие авторитетные эксперты считают, что технологии, позволяющие уменьшать размеры кремниевых металлооксидных полупроводниковых (complimentary metal-oxide semiconductor, CMOS) транзисторов подойдут к пределу физических ограничений уже в 2020 году. После этого, для дальнейшего снижения размеров транзисторов и соответствующего увеличения их быстродействия и эффективности, людям потребуется нечто новое. В качестве одного из вариантов этого нового уже давно рассматриваются углеродные нанотрубки (carbon nanotube, CNT), но до последнего времени их практическое использование в микроэлектронике было и является сейчас невозможным в силу нескольких проблем технического плана. Справедливости ради стоит отметить, что на основе нанотрубок уже были созданы образцы полевых транзисторов (field-effect transistor, FET), но эти образцы являлись лишь продуктом работы научных лабораторий.