Искусственный интеллект для программистов

Как случилось, что искусственный интеллект успешно развивается, а «правильного» определения для него до сих пор нет? Почему не оправдались надежды, возлагавшиеся на нейрокомпьютеры, и в чем заключаются три главные задачи, стоящие перед создателем искусственного интеллекта?

На эти и другие вопросы вы найдете ответ в статье под катом, написанной на основе выступления Константина Анисимовича, директора департамента разработки технологий ABBYY, одного из ведущих экспертов страны в сфере искусственного интеллекта.

При его личном участии были созданы технологии распознавания документов, которые применяются в продуктах ABBYY FineReader и ABBYY FormReader.

Константин рассказал об истории и основах разработки AI на одном из мастер-классов для студентов Технопарка Mail.Ru. Материал мастер-класса и стал базой для цикла статей.

Взлеты и падения подходов в AI

Еще с 1950-х годов в сфере создания искусственного интеллекта выделилось два подхода — символьные вычисления и коннекционизм.

  • Символьные вычисления – это направление, основанное на моделировании мышления человека, а
  • коннекционизм — на моделировании устройства мозга.

Первыми достижениями в области символьных вычислений были созданный в 50-е годы язык Lisp и работа Дж. Робинсона в области логического вывода. В коннекционизме таковым стало создание персептрона – самообучающегося линейного классификатора, моделирующего работу нейрона. Дальнейшие яркие достижения находились в основном в русле символьной парадигмы. В частности, это работы Сеймура Пайперта и Роберта Антона Уинсона в области психологии восприятия и, конечно, фреймы Марвина Минского.

В 70-е годы появились первые прикладные системы, использующие элементы искусственного интеллекта – экспертные системы. Дальше произошел некий ренессанс коннекционизма с появлением многослойных нейронных сетей и алгоритма их обучения методом обратного распространения.

В 80-е годы увлечение нейронными сетями было просто повальным. Сторонники этого подхода обещали создать нейрокомпьютеры, которые будут работать практически как человеческий мозг.

l3_1.jpg Рис. 1.

Но ничего особенного из этого не вышло, потому что настоящие нейроны устроены намного сложнее, чем формальные, на которых основаны многослойные нейросети. И количество нейронов в человеческом мозге тоже намного больше, чем можно было позволить себе в нейросети. Основное, для чего оказались пригодны многослойные нейросети – это решение задачи классификации.

Следующей популярной парадигмой в области искусственного интеллекта стало машинное обучение. Подход начал бурно развиваться с конца 80-х годов и не теряет популярности и поныне. Значительный толчок развитию машинного обучения дало появление интернета и большого количества разнообразных легкодоступных данных, которые можно использовать для обучения алгоритмов.

Главные задачи при проектировании искусственного интеллекта

Можно проанализировать, что роднит те задачи, которые относятся к искусственному интеллекту. Несложно заметить, что общее в них — отсутствие известной, четко определенной процедуры решения. Этим, собственно, задачи, относящиеся к AI, отличаются от задач теории компиляции или вычислительной математики.

Интеллектуальные системы ищут субоптимальные решения задачи. Нельзя ни доказать, ни гаратировать, что найденное искусственным интеллектом решение будет строго оптимальным. Тем не менее, в большинстве практических задач субоптимальные решения всех устраивают. Более того, нужно помнить, что и человек практически никогда не решает задачу оптимально. Скорее, наоборот.

Возникает очень важный вопрос: как может AI решить задачу, для которой нет алгоритма решения? Суть в том, чтобы делать это так же, как и человек — выдвигать и проверять правдоподобные гипотезы. Естественно, что для выдвижения и проверки гипотез нужны знания.

l4_0.jpg Рис. 2.

Знания — это описание предметной области, в которой работает интеллектуальная система. Если перед нами система распознавания символов естественного языка, то знания включают в себя описания устройства символов, структуру текста и тех или иных свойств языка. Если это система оценки кредитоспособности клиента, у нее должны быть знания о типах клиентов и знания о том, как профиль клиента связан с его потенциальной некредитоспособностью. Знания бывают двух типов – о предметной области и о поиске путей решения (метазнания).

Основные задачи проектирования интеллектуальной системы сводятся к выбору способов представления знаний, способов получения знаний и способов применения знаний.

Представление знаний

Существуют два основных способа представления знаний — декларативные и процедурные. Декларативные знания могут быть представлены в структурированном или в неструктурированном виде. Структурированные представления – это та или иная разновидность фреймового подхода. Семантические сети или формальные грамматики, которые тоже можно считать разновидностями фреймов. Знания в этих формализмах представлены в виде множества объектов и отношений между ними.

pic_2_1.png Рис. 3.

Неструктурированные представления используются обычно в тех сферах, которые связаны с решением задач классификации. Это обычно векторы оценок весовых коэффициентов, вероятностей и тому подобное.

Практически все способы структурированного представления знания базируются на формализме фреймов, которые в 1970-е ввел Марвин Минский из MIT, чтобы обозначить структуру знаний для восприятия пространственных сцен. Как выяснилось, подобный подход годится практически для любой задачи.

Фрейм состоит из имени и отдельных единиц, называемых слотами. Значением слота может быть, в свою очередь, ссылка на другой фрейм… Фрейм может быть потомком другого фрейма, наследуя у него значения слотов. При этом потомок может переопределять значения слотов предка и добавлять новые. Наследование используется для того, чтобы сделать описание более компактным и избежать дублирования.

Несложно заметить, что существует сходство между фреймами и объектно-ориентированным программированием, где фрейму соответствует объект, а слоту — поле. Сходство это неслучайное, потому что фреймы были одним из источников возникновения ООП.

В частности, один из первых объектно-ориентированных языков Small Talk практически в точности реализовывал фреймовые представления объектов и классов.

Для процедурного представления знаний используются продукции или продукционные правила. Продукционная модель — это модель, основанная на правилах, позволяющих представить знание в виде предложений «условие — действие». Такой подход раньше был популярен в различных системах диагностики. Достаточно естественно в виде условия описывать симптомы, проблемы или неисправности, а в виде действия — возможную неисправность, которая приводит к наличию этих симптомов.

Список литературы

  1. John Alan Robinson. A Machine-Oriented Logic Based on the Resolution Principle. Communications of the ACM, 5:23–41, 1965.
  2. Seymour Papert, Marvin Minsky. Perceptrons. MIT Press, 1969
  3. Marvin Minsky. Symbolic vs. Connectionist, 1990
  4. Marvin Minsky. A framework for representing knowledge. MIT AI Laboratory Memo 306, June, 1974.
  5. Russell, Norvig. Artificial Intelligence: A Modern Approach.
  6. Simon Haykin. Neural networks: a comprehensive foundation.
  7. Nils J. Nilsson. Artificial Intelligence: A New Synthesis.
Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 4.6 (17 votes)
Источник(и):

1. habrahabr.ru