Надстройка хромосомной ДНК поддалась новой отмычке

Калифорнийские учёные представили новую технологию расшифровки так называемой эпигенетической информации — «скрытого слоя» наследственности. Эти данные, которые не определяются традиционными методиками, однако оказывают очень существенное влияние на то, как записанные в геноме инструкции будут реализованы.

membrana-1273852661.jpg Для формирования «клубка» хроматина, столь трудно поддающегося расшифровке, основные аминокислоты белков гистонов взаимодействуют с кислотными фосфатными группами ДНК (иллюстрация Wikimedia commons)

Небольшой экскурс в историю: наука эпигенетика начала активно развиваться в конце XX века, когда учёные пришли к пониманию того, что наследственная информация заложена не только в самой последовательности ДНК, но и в определённых модификациях отдельных кодирующих «букв алфавита» – нуклеотидов.

Так, например, простое добавление метильной группы (CH3) часто приводит к инактивации модифицированного участка ДНК. Проблема до сих пор была в отсутствии у исследователей хоть сколько-нибудь потокового метода работы с эпигеномом – модифицированные нуклеотиды искали практически «с лупой».

membrana-1273852661-0.jpg Следует заметить, что пока исследователи смогли приспособить метод для опознания далеко не для всех типов метилирования (иллюстрация Pacific Biosciences).

Широко распространённая технология поиска метильных групп заключается в следующем: образцы ДНК химически модифицируют так, что неметилированные нуклеотиды (даже более конкретно – цитозин) превращаются в другой тип нуклеотидов – урацил (в РНК он заменяет тимин).

В норме ДНК не содержит урацил вовсе, потому после определения последовательности специалисты могут узнать, какие цитозины содержат метильную группу. У этого способа есть масса существенных недостатков, главный из которых, разумеется, чрезмерная трата как ресурсов, так и просто времени.

Также подобная модификация генома не позволяет находить метилированные аденины (очень распространённые, например, у бактерий), не говоря уже о том, что химическая обработка повреждает ДНК и тем самым априори снижает точность итоговой расшифровки.

Все перечисленные факторы подтолкнули авторов новой работы — исследователей из компании Pacific Biosciences — к принципиально иной методике поиска эпигенетических модификаций, основанной на использовании флуоресцентных меток.

membrana-1273852661-1.jpgНеобычная изогнутость хвоста у этих мышей напрямую зависит от эпигенетических факторов – метилирования ДНК (фото Emma Whitelaw, University of Sydney).

Суть так называемой SMRT-технологии (SMRT sequencing) в следующем: в ходе определения последовательности фермент ДНК-полимераза выстраивает копию изучаемой цепи ДНК из нуклеотидов, находящихся в реакционной смеси. К ним присоединены флуоресцентные маркеры.

Каждый из четырёх нуклеотидов, входящих в состав ДНК (известный всем «тетраграмматон» аденин-цитозин-гуанин-тимин), светится собственным уникальным цветом, поэтому для специалистов не составит особого труда определить при помощи специального сканера последовательность новосозданной нити ДНК.

Наличие метилированных нуклеотидов в SMRT-методе распознают по изменению времени следующей вспышки – это означает, что фермент включил в цепь очередной нуклеотид. Новая технология позволяет очень быстро определять местонахождение метильной группы.

Теперь ложка дёгтя: SMRT-технология не позволяет определять наличие метилирования на отрезках ДНК большой длины – лучше всего она работает для фрагментов длиной в тысячу нуклеотидов или меньше.

А ведь для того чтобы получить полногеномную карту метилирования, в качестве «сырья» необходимо использовать отрезки ДНК длиной от 8–10 тысяч нуклеотидов как минимум. Пока у специалистов нет ответа на вопрос, как они собираются справиться с этой проблемой, – она просто напряжённо решается, методом проб и ошибок.

membrana-1273852661-2.jpg Авторы опубликованной в феврале в Nature статьи, к примеру, предлагали отслеживать эпигенетические изменения про хроматиновым «волокнам», отмеченным на рисунке красным цветом (иллюстрация M. Green & S. Forsburg, University Southern California).

Однако представители Pacific Biosciences полны оптимизма и планируют начать выпуск приборов, определяющих последовательность ДНК при помощи SMRT-метода, уже в этом году, а в 2011-м – запустить линейку устройств, которые могут определять наличие метильных групп.

Тема, которой занимаются калифорнийские генетики, весьма неоднозначна и потенциально таит в себе много возможностей. Изменение надгеномных модификаций может иметь значение для протекания многих важных процессов в организме (и при развитии рака в том числе).

Также известно, что эпигенетические изменения затрагивают белки, связанные с нуклеиновыми кислотами. Видеопрезентацию новой методики можно уже сейчас посмотреть на сайте Pacific Biosciences.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 4.8 (5 votes)
Источник(и):

Membrana.ru